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Abstract: Brains, it has recently been argued, are essentially prediction machines. They 
are bundles of cells that support perception and action by constantly attempting to match 
incoming sensory inputs with top-down expectations or predictions. This is achieved 
using a hierarchical generative model that aims to minimize prediction error within a 
bidirectional cascade of cortical processing.  Such accounts offer a unifying model of 
perception and action, illuminate the functional role of attention, and may neatly capture 
the special contribution of cortical processing to adaptive success. The paper critically 
examines this ‘hierarchical prediction machine’ approach, concluding that it offers the 
best clue yet to the shape of a unified science of mind and action. Sections 1 and 2 lay out 
the key elements and implications of the approach. Section 3 explores a variety of pitfalls 
and challenges, spanning the evidential, the methodological, and the more properly 
conceptual. The paper ends (sections 4 and 5) by asking how such approaches might 
impact our more general vision of mind, experience, and agency.  
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1. Prediction Machines 

 

1.1 From Helmholtz to Action-Oriented Predictive Processing 

 

“The whole function of the brain is summed up in: error correction”  

 

So wrote W. Ross Ashby, the British psychiatrist and cyberneticist, some half a century 

agoi. Computational neuroscience has come a very long way since then. There is now 

increasing reason to believe that Ross Ashby’s (admittedly somewhat vague) statement is 

correct, and that it captures something crucial about the way that spending metabolic 

money to build complex brains pays dividends in the search for adaptive success. In 

particular, one of the brain’s key tricks, it now seems, is to implement dumb processes 

that correct a certain kind of error: error in the multi-layered prediction of input. In 

mammalian brains, such errors look to be corrected within a cascade of cortical 

processing events in which higher-level systems attempt to predict the inputs to lower 

level ones on the basis of their own emerging models of the causal structure of the world 

(i.e. the signal source). Errors in predicting lower level inputs cause the higher-level 

models to adapt so as to reduce the discrepancy. Operating over a plethora of linked 

higher-level models, the upshot is a brain that encodes a rich body of information about 

the source of the signals that regularly perturb it.  

 

Such models follow Helmholtz (1860) in depicting perception as a process of 

probabilistic, knowledge-driven inference. From Helmholz comes the key idea that 

sensory systems are in the tricky business of inferring sensory causes from their bodily 

effects. This in turn involves computing multiple probability distributions since a single 

such effect will be consistent with many different sets of causes distinguished only by 

their relative (and context dependent) probability of occurrence.   
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Helmholz insight informed influential work by MacKay (1956), Neisser (1967), and 

Gregory (1980), as part of the cognitive psychological tradition that became known as 

‘analysis-by-synthesis’ (for a review, see Yuille and Kersten (2006)). In this paradigm the 

brain does not build its current model of distal causes (its model of how the world is) 

simply by accumulating, from the bottom-up, a mass of low-level cues such as edge-maps 

etc. Instead (see Hohwy (2007)) the brain tries to predict the current suite of cues from its 

best models of the possible causes. In this way: 

 

“The mapping from low- to high-level representation (e.g. from acoustic to word-

level) is computed using the reverse mapping, from high- to low-level 

representation” Chater and Manning (2006, p.340, their emphasis). 

 

Helmholz’ insight was also pursued in an important body of computational and 

neuroscientific work. Crucial to this lineage were seminal advances in machine learning 

that began with pioneering connectionist work on back-propagation learning 

(McClelland et al (1986), Rumelhart et al (1986)) and continued with work on the aptly 

named ‘Helmholz machine’ (Dayan et al (1995), Dayan and Hinton (1996) – see also 

Hinton and Zemel (1994))ii. Importantly for our purposes, the Helmholtz Machine 

sought to learn new representations in a multi-level system (thus capturing increasingly 

deep regularities within a domain) without requiring the provision of copious pre-

classified samples of the desired input-output mapping. In this respect it aimed to 

improve (see Hinton (2010)) upon standard back-propagation driven learning. It did this 

by using its own top-down connections to provide the desired states for the hidden units 

thus (in effect) self-supervising the development of its perceptual ‘recognition model’ 

using a generative model that tried to create the sensory patterns for itself (in ‘fantasy’ as 

it was sometimes said)iii. (For a useful review of this crucial innovation and a survey of 

many subsequent developments, see Hinton (2007a)).  

 

A generative model, in this quite specific sense, aims to capture the statistical structure of 

some set of observed inputs by tracking (one might say, by schematically recapitulating) 



 4 

the causal matrix responsible for that very structure. A good generative model for vision 

would thus seek to capture the ways in which observed lower level visual responses are 

generated by an interacting web of causes - for example, the various aspects of a visually 

presented scene. In practice, this means that top-down connections within a multi-level 

(hierarchical and bidirectional) system come to encode a probabilistic model of the 

activities of units and groups of units within lower levels, thus tracking  (as we shall 

shortly see in more detail) interacting causes in the signal source, which might be the 

body, or the external world – see e.g. Kawato et al (1993), Hinton and Zemel (1994), 

Mumford (1994), Hinton et al (1995), Dayan et al (1995), Olshausen & Field, (1996), 

Dayan (1997), Hinton and Ghahramani (1997).  

 

It is this twist – the strategy of using top-down connections to try to generate, using high-

level knowledge, a kind of ‘virtual version’ of the sensory data via a deep multilevel 

cascade – that lies at the heart of ‘hierarchical predictive coding’ approaches to perception 

(Rao and Ballard (1999), Lee and Mumford (2003), Friston (2005)). Such approaches, 

along with their recent extensions to action (Friston and Stephan (2007), Friston, 

Daunizeau et al (2009), Friston (2010), Brown et al (2011)) form the main focus of the 

present treatment. These approaches combine the use of top-down probabilistic 

generative models with a specific vision of one way such downward influence might 

operate. That way (borrowing from work in linear predictive coding – see below) depicts 

the top-down flow as attempting to predict and fully ‘explain away’ the driving sensory 

signal, leaving only any residual ‘prediction errors’ to propagate information forward 

within the system (Rao and Ballard (1999), Lee and Mumford (2003), Friston (2005), 

Hohwy et al (2008), Jehee and Ballard (2009), Friston (2010), Brown et al (2011) -– for a 

recent review, see Huang and Rao (2011)).  

 

Predictive coding itself was first developed as a data compression strategy in signal 

processing (for a history, see Shi and Sun (1999)). Thus consider a basic task such as 

image transmission. In most images, the value of one pixel regularly predicts the value of 

its nearest neighbors, with differences marking important features such as the boundaries 
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between objects. That means that the code for a rich image can be compressed (for a 

properly informed receiver) by encoding only the ‘unexpected’ variation: the cases where 

the actual value departs from the predicted one. What needs to be transmitted is thus just 

the difference (aka the ‘prediction error’) between the actual current signal and the 

predicted one. This affords major savings on bandwidth, an economy that was the driving 

force behind the development of the techniques by James Flanagan and others at Bell 

Labs during the 1950’s (for a review, see Musmann (1979)). Descendents of this kind of 

compression technique are currently used in JPEGS, in various forms of lossless audio 

compression, and in motion-compressed coding for video. The information that needs to 

be communicated ‘upwards’ under all these regimes is just the prediction error: the 

divergence from the expected signal. Transposed (in ways we are about to explore) to the 

neural domain, this makes prediction error into a kind of proxy (Feldman and Friston 

(2010)) for sensory information itself. Later, when we consider predictive processing in 

the larger setting of information theory and entropy, we will see that prediction error 

reports the ‘surprise’ induced by a mismatch between the sensory signals encountered 

and those predicted.  More formally – and to distinguish it from surprise in the normal, 

experientially-loaded, sense - this is known as surprisal (Tribus (1961)). 

 

Hierarchical predictive processing combines the use, within a multi-level bidirectional 

cascade, of ‘top-down’ probabilistic generative models with the core predictive coding 

strategy of efficient encoding and transmission. Such approaches, originally developed in 

the domain of perception, have been extended (by Friston and others – see 1.5 following) 

to encompass action, and to offer an attractive, unifying perspective on the brain’s 

capacities for learning, inference, and the control of plasticity.  Perception and action, if 

these unifying models are correct, are intimately related and work together to reduce 

prediction error by sculpting and selecting sensory inputs. In the remainder of this 

section I rehearse some of the main features of these models before highlighting (sections 

2-5 following) some of their most conceptually important and challenging aspects. 

 

1.2 Escaping the Black Box 
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A good place to start (following Rieke (1999)) is with what might be thought of as the 

“view from inside the black box”. For the task of the brain, when viewed from a certain 

distance, can seem impossible: it must discover information about the likely causes of 

impinging signals without any form of direct access to their source. Thus consider a black 

box taking inputs from a complex external world. The box has input and output channels 

along which signals flow. But all that it ‘knows’ about, in any direct sense, are the ways its 

own states (e.g. spike trains) flow and alter. In that (restricted) sense, all the system has 

direct access to are its own states. The world itself is thus off-limits (though the box can, 

importantly, issue motor commands and await developments).  The brain is one such 

black box. How, simply on the basis of patterns of changes in its own internal states, is it 

to alter and adapt its responses so as to tune itself to act as a useful node (one that merits 

its relatively huge metabolic expense) for the origination of adaptive responses? Notice 

how different this conception is to ones in which the problem is posed as one of 

establishing a mapping relation between environmental and inner states. The task is not 

to find such a mapping but to infer the nature of the signal source (the world) from just 

the varying input signal itself. 

 

Hierarchical approaches in which top-down generative models are trying to predict the 

flow of sensory data provide a powerful means for making progress under such 

apparently unpromising conditions. One key task performed by the brain, according to 

these models, is that of guessing the next states of its own neural economy. Such guessing 

improves when you use a good model of the signal source. Cast in the Bayesian mode, 

good guesses thus increase the posterior probabilityiv of your model. Various forms of 

gradient descent learning can progressively improve your first guesses. Applied within a 

hierarchical predictive processingv regime, this will – if you survive long enough – tend to 

yield useful generative models of the signal source (ultimately, the world).  

 

The beauty of the bidirectional hierarchical structure is that it allows the system to infer 

its own priors (the prior beliefs essential to the guessing routines) as it goes along. It does 



 7 

this by using its best current model - at one level - as the source of the priors for the level 

below, engaging in a process of ‘iterative estimation’ (see Dempster, Laird, and Rubin 

(1977), Neal and Hinton (1998)) that allows priors and models to co-evolve across 

multiple linked layers of processing so as to account for the sensory data. The presence of 

bidirectional hierarchical structure thus induces ‘empirical priors’vi in the form of the 

constraints that one level in the hierarchy places on the level below, and these constraints 

are progressively tuned by the sensory input itself.  This kind of procedure (which 

implements a version of ‘empirical Bayes’ Robbins (1956)) has an appealing mapping to 

known facts about the hierarchical and reciprocally connected structure and wiring of 

cortex (Lee and Mumford (2003), Friston (2005))vii.  

 

A classic early example, combining this kind of hierarchical learning with the basic 

predictive coding strategy described in 1.1 above, is Rao and Ballard’s (1999) model of 

predictive coding in the visual cortex. At the lowest level there is some pattern of 

energetic stimulation, transduced (let’s suppose) by sensory receptors from ambient light 

patterns produced by the current visual scene. These signals are then processed via a 

multi-level cascade in which each level attempts to predict the activity at the level below it 

via backwardviii connections. The backward connections allow the activity at one stage of 

the processing to return as another input at the previous stage. So long as this successfully 

predicts the lower level activity all is well, and no further action needs to ensue. But where 

there is a mismatch  ‘prediction error’ occurs and the ensuing (error-indicating) activity 

is propagated to the higher level. This automatically adjusts probabilistic representations 

at the higher level so that top-down predictions cancel prediction errors at the lower level 

(yielding rapid perceptual inference).  At the same time, prediction error is used to adjust 

the structure of the model so as to reduce any discrepancy next time around (yielding 

slower timescale perceptual learning). Forward connections between levels thus carry the 

‘residual errors’ (Rao and Ballard (1999) p.79) separating the predictions from the actual 

lower level activity, while backward connections (which do most of the ‘heavy lifting’ in 

these models) carry the predictions themselves. Changing predictions corresponds to 

changing or tuning your hypothesis about the hidden causes of the lower level activity. 



 8 

The concurrent running of this kind of prediction error calculation within a loose 

bidirectional hierarchy of cortical areas allows information pertaining to many different 

grain sizes (that is, different spatial and temporal scales) within the image to be played off 

against one another, with each such ‘hypothesis’ being used to tune the rest. As the 

authors put it: 

 

“prediction and error-correction cycles occur concurrently throughout the 

hierarchy, so top-down information influences lower-level estimates, and bottom-

up information influences higher-level estimates of the input signal” Rao and 

Ballard (1999) p.80 

 

In visual cortex, such a scheme suggests that backward connections from V2 to V1 would 

carry a prediction of expected activity in V1, while forward connections from V1 to V2 

would carry forward the error signalix indicating residual (unpredicted) activity.  

 

To test these ideas, Rao and Ballard implemented a simple bidirectional hierarchical 

network of such ‘predictive estimators’ and trained it on image patches derived from five 

natural scenes. Using learning algorithms that progressively reduce prediction error 

across the linked cascade and after exposure to thousands of image patches, the system 

learnt to use responses in the first level network to extract features such as oriented edges 

and bars, while the second level network came to capture combinations of such features 

corresponding to patterns involving larger spatial configurations. The model also 

displayed (see section 3.1 following) a number of interesting ‘extra-classical receptive 

field’ effects suggesting that such non-classical surround effects (and, as we’ll later see, 

context effects more generally) may be a rather direct consequence of the use of 

hierarchical predictive coding.  

 

For immediate purposes, however, what matters is that the predictive coding approach, 

given only the statistical properties of the signals derived from the natural images, was 

able to induce a kind of generative model of the structure of the input data: it learnt about 
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the presence and importance of features such as lines, edges, and bars, and about 

combinations of such features, in ways that enable better predictions concerning what to 

expect next, in space or in time. The cascade of processing induced by the progressive 

reduction of prediction error in the hierarchy reveals the world outside the black box. It 

maximizes the posterior probability of generating the observed states (the sensory 

inputs), and in so doing induces a kind of internal model of the source of the signals: the 

world hidden behind the veil of perception. 

 

1.3 Dynamic Predictive Coding by the Retina 

 

As an example of the power (and potential ubiquity) of the basic predictive coding 

strategy itself, and one that now moves context centre stage, consider Hosoya et al’s 

(2005) account of dynamic predictive coding by the retina. The starting point of this 

account is the well-established sense in which retinal ganglion cells take part in some 

form of predictive coding, insofar as their receptive fields display centre-surround spatial 

antagonism, as well as a kind of temporal antagonism. What this means, in each case, is 

that neural circuits predict, on the basis of local image characteristics, the likely image 

characteristics of nearby spots in space and time (basically, assuming that nearby spots 

will display similar image intensities) and subtract this predicted value from the actual 

value. What gets encoded is thus not the raw value but the differences between raw values 

and predicted values. In this way “Ganglion cells signal not the raw visual image but the 

departures from the predictable structure, under the assumption of spatial and temporal 

uniformity.” (Hosoya et al (2005) p.71). This saves on bandwidth, and also flags what is 

(to use Hosoya et al’s own phrase) most ‘newsworthy’ in the incoming signalx. 

 

These computations of predicted salience might be made solely on the basis of average 

image statistics. Such an approach would, however, lead to trouble in many ecologically 

realistic situations.  To take some of the more dramatic examples, consider an animal that 

frequently moves between a watery environment and dry land, or between a desert 

landscape and a verdant oasis. The spatial scales at which nearby points in space and time 
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are typically similar in image intensity vary markedly between such cases, because the 

statistical properties of the different types of scene vary. This is true in less dramatic cases 

too, such as when we move from inside a building to a garden or lake. Hosoya et al thus 

predicted that, in the interests of efficient, adaptively potent, encoding, the behaviour of 

the retinal ganglion cells (specifically, their receptive field properties) should vary as a 

result of adaptation to the current scene or context, exhibiting what they term ‘dynamic 

predictive coding’. 

 

Putting salamanders and rabbits into varying environments, and recording from their 

retinal ganglion cells, Hosoya et al confirmed their hypothesis: within a space of several 

seconds about 50% of the ganglion cells altered their behaviours to keep step with the 

changing image statistics of the varying environments. A mechanism was then proposed 

and tested using a simple feedforward neural network that performs a form of anti-

Hebbian learning. Anti-Hebbian feedforward learning, in which correlated activity across 

units leads to inhibition rather than to activation (see e.g. Kohonen (1989)) enables the 

creation of ‘novelty filters’ that learn to become insensitive to the most highly correlated 

(hence most ‘familiar’) features of the input. This, of course, is exactly what is required in 

order to learn to discount the most statistically predictable elements of the input signal in 

the way dynamic predictive coding suggests. Better yet, there are neuronally plausible 

ways to implement such a mechanism using amacrine cell synapses to mediate plastic 

inhibitory connections that in turn alter the receptive fields of retinal ganglion cells (for 

details, see Hosoya et al (2005) p.74) so as to suppress the most correlated components of 

the stimulus. In sum, retinal ganglion cells seem to be engaging in a computationally and 

neurobiologically explicable process of dynamic predictive recoding of raw image inputs, 

whose effect is to “strip from the visual stream predictable and therefore less newsworthy 

signals” (Hosoya et al (2005) p.76).  

 

1.4 Another Illustration: Binocular Rivalry 
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So far, our examples have been restricted to relatively low-level visual phenomena. As a 

final illustration, however, consider Hohwy, Roepstorff, and Friston’s (2008) hierarchical 

predictive coding model of binocular rivalry. Binocular rivalry (see e.g. essays in Alais and 

Blake (2005), and the review article by Leopold and Logothetis (1999)) is a striking form 

of visual experience that occurs when, using a special experimental set-up; each eye is 

presented (simultaneously) with a different visual stimulus. Thus, the right eye might be 

presented with an image of a house, while the left receives an image of a face. Under these 

(extremely – and importantly - artificial) conditions, subjective experience unfolds in a 

surprising ‘bi-stable’ manner. Instead of seeing (visually experiencing) a confusing all-

points merger of house and face information, subjects report a kind of perceptual 

alternation between seeing the house and seeing the face. The transitions themselves are 

not always sharp, and subjects often report a gradual breaking through (see e.g. Lee at al 

(2005)) of elements of the other image, before it dominates the previous one, after which 

the cycle repeats.  

 

Such ‘binocular rivalry’, as Hohwy et al remind us, has been a powerful tool for studying 

the neural correlates of conscious visual experience, since the incoming signals remain 

constant while the percept switches to and fro (Frith, Perry, and Lumer (1999)). Despite 

this attention, however, the precise mechanisms at play here are not well understood. 

Hohwy et al’s strategy is to take a step back, and to attempt to explain the phenomenon 

from first principles in a way that makes sense of many apparently disparate findings. In 

particular, they pursue what they dub an ‘epistemological’ approach: one whose goal is to 

reveal binocular rivalry as a reasonable (knowledge-oriented) response to an ecologically 

unusual stimulus condition.  

 

The starting point for their story is, once again, the emerging unifying vision of the brain 

as an organ of prediction using a hierarchical generative model. Recall that, on these 

models, the task of the perceiving brain is to account for (to ‘explain away’) the incoming 

or ‘driving’ sensory signal by means of a matching top-down prediction. The better the 

match, the less prediction error then propagates up the hierarchy. The higher level 
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guesses are thus acting as priors for the lower level processing, in the fashion of so-called 

‘empirical Bayes’ (such methods use their own target data sets to estimate the prior 

distribution: a kind of bootstrapping that exploits the statistical independencies that 

characterize hierarchical models). 

 

Within such a multi-level setting a visual percept is determined by a process of prediction 

operating across many levels of a (bidirectional) processing hierarchy, each concerned 

with different types and scales of perceptual detail. All the communicating areas are 

locked into a mutually coherent predictive coding regime, and their interactive 

equilibrium ultimately selects a best overall (multi-scale) hypothesis concerning the state 

of the visually presented world. This is the hypothesis that “makes the best predictions 

and that, taking priors into consideration, is consequently assigned the highest posterior 

probability” (Hohwy, Roepstorff, and Friston (2008) p.690). Other overall hypotheses, at 

that moment, are simply crowded out: they are effectively inhibited, having lost the 

competition to best account for the driving signal.  

 

Notice, though, what this means in the context of the predictive coding cascade. Top-

down signals will explain away (by predicting) only those elements of the driving signal 

that conform to (and hence are predicted by) the current winning hypothesis. In the 

binocular rivalry case, however, the driving (bottom-up) signals contain information that 

suggests two distinct, and incompatible, states of the visually presented world – e.g. face 

at location X/house at location X. When one of these is selected as the best overall 

hypothesis, it will account for all and only those elements of the driving input that that 

hypothesis predicts. As a result, prediction error for that hypothesis decreases. But 

prediction error associated with the elements of the driving signal suggestive of the 

alternative hypothesis is not suppressed, and is now propagated up the hierarchy. To 

suppress those prediction errors the system needs to find another hypothesis. But having 

done so (and hence, having flipped the dominant hypothesis to the other interpretation), 

there will again emerge a large prediction error signal, this time deriving from those 

elements of the driving signal not accounted for by the flipped interpretation. In Bayesian 



 13 

terms, this is a scenario in which no unique and stable hypothesis combines high prior 

and high likelihood. No single hypothesis accounts for all the data, so the system 

alternates between the two semi-stable states. It behaves as a bi-stable system, minimizing 

prediction error in what Hohwy et al describe as an energy landscape containing a double 

well. 

 

What makes this account different from its rivals (such as Lee, Blake, and Heeger (2005)) 

is that where they posit a kind of direct, attention-mediated but essentially feedforward, 

competition between the inputs, the predictive processing account posits ‘top-down’ 

competition between linked sets of hypotheses. The effect of this competition is to 

selectively suppress the prediction errors associated with the elements of the driving 

(sensory) signals suggesting the current winning hypothesis. But this top-down 

suppression leaves untouched the prediction errors associated with the remaining 

elements of the driving signal. These errors are then propagated up the system. To 

explain them away the overall interpretation must switch. This pattern repeats, yielding 

the distinctive alternations experienced during dichoptic viewing of inconsistent stimulixi. 

 

Why, under such circumstances, do we not simply experience a combined or interwoven 

image: a kind of house/face mash-up for example? Although such partially combined 

percepts do apparently occur, for brief periods of time, they are not sufficiently stable, as 

they do not constitute a viable hypothesis given our more general knowledge about the 

visual world. For it is part of that general knowledge that, for example, houses and faces 

are not present in the same place, at the same scale, at the same time. This kind of general 

knowledge may itself be treated as a systemic prior, albeit one pitched at a relatively high 

degree of abstraction (such priors are sometimes referred to as ‘hyperpriors’).   In the case 

at hand, what is captured is the fact that “the prior probability of both a house and face 

being co-localized in time and space is extremely small” (op cit p.5). This, indeed, is the 

deep explanation of the existence of competition between certain higher-level hypotheses 

in the first place. They compete because the system has learnt that ‘only one object can 

exist in the same place at the same time’ (op cit p.8). (This obviously needs careful 
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handling, since a single state of the world may be consistently captured by multiple high 

level stories that ought not to compete in the same way: e.g. seeing the painting as 

valuable, as a Rembrandt, as an image of a cow, etc). 

 

1.5 Action-Oriented Predictive Processing 

 

Recent work (Friston, Daunizeau et al (2009), Friston (2010), Brown et al (2011)) 

generalizes this basic ‘hierarchical predictive processing’ model to include action. 

According to what I shall now dub ‘action-oriented predictive processing’xii perception 

and action both follow the same deep ‘logic’ and are even implemented using the same 

computational strategies. A fundamental attraction of these accounts thus lies in their 

ability to offer a deeply unified account of perception, cognition, and action.  

 

Perception, as we saw, is here depicted as a process that attempts to match incoming 

‘driving’ signals with a cascade of top-down predictions (spanning multiple spatial and 

temporal scales) that aim to cancel it out. Motor action exhibits a surprisingly similar 

profile, except that: 

 

“In motor systems error signals self-suppress, not through neuronally mediated 

effects, but by eliciting movements that change bottom-up proprioceptive and 

sensory input. This unifying perspective on perception and action suggests that 

action is both perceived and caused by its perception”  Friston (2003) p. 1349 

 

This whole scenario is wonderfully captured by Hawkins and Blakeslee who write that: 

 

“As strange as it sounds, when your own behaviour is involved, your predictions 

not only precede sensation, they determine sensation. Thinking of going to the 

next pattern in a sequence causes a cascading prediction of what you should 

experience next. As the cascading prediction unfolds, it generates the motor 

commands necessary to fulfil the prediction. Thinking, predicting, and doing are 
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all part of the same unfolding of sequences moving down the cortical hierarchy” 

Hawkins and Blakeslee (2004) p.158 

 

A closely related body of work in so-called ‘optimal feedback control theory’ (e.g. 

Todorov and Jordan (2002), Todorov (In Press)) displays the motor control problem as 

mathematically equivalent to Bayesian inference. Very roughly – see Todorov (In Press) 

for a detailed account - you treat the desired (goal) state as observed and perform 

Bayesian inference to find the actions that get you there. This mapping between 

perception and action emerges also in some recent work on planning (e.g. Toussaint (In 

Press)). The idea, closely related to these approaches to simple movement control, is that 

in planning we imagine a future goal state as actual, then use Bayesian inference to find 

the set of intermediate states (which can now themselves be whole actions) that get us 

there. There is thus emerging a fundamentally unified set of computational models 

which, as Toussaint (in press) comments “do not distinguish between the problems of 

sensor processing, motor control, or planning”. At the very least, it now seems likely that 

perception and action are in some deep sense computational siblings and that: 

 

“ the best ways of interpreting incoming information via perception, are deeply 

the same as the best ways of controlling outgoing information via motor 

action….so the notion that there are a few specifiable computational principles 

governing neural function seems plausible. ” Eliasmith (2007) p. 380 

 

Action-oriented predictive processing goes further, however, in suggesting that motor 

intentions actively elicit, via their unfolding into detailed motor actions, the ongoing 

streams of sensory (especially proprioceptive) results that our brains predict. This deep 

unity between perception and action emerges most clearly in the context of so-called 

‘active inference’, where the agent moves its sensors in ways that amount (Friston (2009), 

Friston, Daunizeau et al (2010))) to actively seeking or generating the sensory 

consequences that they (or rather, their brains) expect. Perception, cognition, and action 

- if this unifying perspective proves correct - work closely together to minimize sensory 
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prediction errors by selectively sampling, and actively sculpting, the stimulus array.  They 

thus conspire to move a creature through time and space in ways that fulfil an ever-

changing and deeply inter-animating set of (sub-personal) expectations. According to 

these accounts, then: 

 

“Perceptual learning and inference is necessary to induce prior expectations about 

how the sensorium unfolds. Action is engaged to resample the world to fulfil these 

expectations. This places perception and action in intimate relation and accounts 

for both with the same principle” (Friston, Daunizeau, and Kiebel (2009) p. 12) 

 

In some (I’ll call them the ‘desert landscape’) versions of this story (see especially Friston 

(2011a), Friston, Daunizeau, et al  (2010)) proprioceptive prediction errors act directly as 

motor commands.  On these models it is our expectations about the proprioceptive 

consequences of moving and acting that directly bring the moving and acting aboutxiii. I 

return briefly to these ‘desert landscape’ scenarios in section 5.1 following.  

 

1.6 The Free Energy Formulation 

 

That large-scale picture (of creatures enslaved to sense and act in ways that make most of 

their sensory predictions come true) finds fullest expression in the so-called  ‘free-energy 

minimization’ framework (Friston and Stephan (2007), Friston (2003) (2009) (2010)). 

Free-energy formulations originate in statistical physics and were introduced into the 

machine learning literature in treatments that include Neal and Hinton (1998), Hinton 

and von Camp (1993), Hinton and Zemel (1994), and MacKay (1995). Such formulations 

can arguably be used (e.g. Friston (2010)) to display the prediction error minimization 

strategy as itself a consequence of a more fundamental mandate to minimize an 

information-theoretic isomorph of thermodynamic free-energy in a system’s exchanges 

with the environment.  
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Thermodynamic free energy is a measure of the energy available to do useful work. 

Transposed to the cognitive/informational domain, it emerges as the difference between 

the way the world is represented as being, and the way it actually is. The better the fit, the 

lower the information-theoretic free energy (this is intuitive, since more of the system’s 

resources are being put to ‘effective work’ in representing the world). Prediction error 

reports this information-theoretic free energy, which is mathematically constructed so as 

always to be greater than ‘surprisal’ (where this names the sub-personally computed 

implausibility of some sensory state given a model of the world - see Tribus (1961) and 

section 4.1 following) Entropy, in this information-theoretic rendition, is the long-term 

average of surprisal, and reducing information-theoretic free energy amounts to 

improving the world model so as to reduce prediction errors, hence reducing surprisalxiv 

(since better models make better predictions). The overarching rationale (Friston (2010)) 

is that good models help us to maintain our structure and organization, hence (over 

extended but finite timescales) to appear to resist increases in entropy and the second law 

of thermodynamics. They do so by rendering us good predictors of sensory unfoldings, 

hence better poised to avoid damaging exchanges with the environment.  

 

The ‘free-energy principle’ itself then states that “all the quantities that can change; i.e. 

that are part of the system, will change to minimize free-energy” (Friston and Stephan 

(2007) p. 427). Notice that thus formulated this is a claim about all elements of systemic 

organization (from gross morphology to the entire organization of the brain) and not just 

about cortical information processing. Using a series of elegant mathematical 

formulations, Friston (2009) (2010) suggests that this principle, when applied to various 

elements of neural functioning, leads to the generation of efficient internal 

representational schemes and reveals the deeper rationale behind the links between 

perception, inference, memory, attention, and action scouted in the previous sections. 

Morphology, action tendencies (including the active structuring of environmental 

niches), and gross neural architecture are all claimed to fall – though at very different 

timescales - under this single umbrella.  
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The free energy account is of great independent interest. It represents a kind of ‘maximal 

version’ of the claims scouted in section 1.5 concerning the computational intimacy of 

perception and action, and it is suggestive of a general framework that might 

accommodate the growing interest (see e.g. Thompson (2007)) in understanding the 

relations between life and mind. Essentially, the hope is to illuminate the very possibility 

of self-organization in biological systems (see e.g. Friston (2009) p.293)). A full 

assessment of the free energy principle is, however, far beyond the scope of the present 

treatmentxv. In the remainder of this treatment I turn instead to a number of issues and 

implications arising more directly from hierarchical predictive processing accounts of 

perception and their possible extensions to action. 

 

2. Representation, Inference, and the Continuity of Perception, Cognition, and 

Action. 

 

The hierarchical predictive processing account, along with the more recent 

generalizations to action represents, or so I shall now argue, a genuine departure from 

many of our previous ways of thinking about perception, cognition, and the human 

cognitive architecture. It offers a distinctive account of neural representation, neural 

computation, and the representation relation itself. It depicts perception, cognition, and 

action as profoundly unified and, in important respects, continuous. And it offers a 

neurally plausible and computationally tractable gloss on the claim that the brain 

performs some form of Bayesian inference. 

 

2.1 Explaining Away 

 

To successfully represent the world in perception, if these models are correct, depends 

crucially upon cancelling out sensory prediction error. Perception thus involves 

‘explaining away’ the driving (incoming) sensory signal by matching it with a cascade of 

predictions pitched at a variety of spatial and temporal scales. These predictions reflect 

what the system already knows about the world (including the body) and the 
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uncertainties associated with its own processing. Perception here becomes ‘theory-laden’ 

in at least one (rather specific) sense: what we perceive depends heavily upon the set of 

priors (including any relevant hyperpriors) that the brain brings to bear in its best 

attempt to predict the current sensory signal. On this model, perception demands the 

success of some mutually supportive stack of states of a generative model (recall 1.1 

above) at minimizing prediction error by hypothesizing an interacting set of distal causes 

that predict, accommodate, and (thus)  “explain away” the driving sensory signal. 

 

This appeal to ‘explaining away’ is important and central, but it needs very careful 

handling. It is important as it reflects the key property of hierarchical predictive 

processing models, which is that the brain is in the business of active, ongoing, input 

prediction and does not (even in the early sensory case) merely react to external stimuli. 

It is important also insofar as it is the root of the attractive coding efficiencies that these 

models exhibit, since all that needs to be passed forward through the system is the error 

signal, which is what remains once predictions and driving signals have been matchedxvi. 

In these models it is thus the backwards (recurrent) connectivity that carries the main 

information processing load. It is important, however, not to overplay this difference. In 

particular, it is potentially misleading to say that: 

 

“Activation in early sensory areas no longer represents sensory information per se, 

but only that part of the input that has not been successfully predicted by higher-

level areas” (De-Wit, Machilsen, and Putzeys (2010) 8702 

 

For this stresses only one aspect of what is (at least in context of the rather specific models 

we have been consideringxvii) actually depicted as a kind of duplex architecture: one that at 

each level combines quite traditional representations of inputs with representations of 

error. According to the duplex proposal, what gets ‘explained away’ or cancelled out is the 

error signal, which (in these models) is depicted as computed by dedicated ‘error units’. 

These are linked to, but distinct from, the so-called ‘representation units’ meant to 

encode the causes of sensory inputs. By cancelling out the activity of the error units, 
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activity in some of the laterally interacting ‘representation’ units (which then feed 

predictions downwards and are in the business of encoding the putative sensory causes) 

can actually end up being selected and sharpened. The hierarchical predictive processing 

account thus avoids any direct conflict with accounts (e.g. biased competition models 

such as Desimone and Duncan (1995)) that posit top-down enhancements of selected 

aspects of the sensory signal since: 

 

“High-level predictions explain away prediction error and tell the error units to 

‘shut up’ [while] units encoding the causes of sensory input are selected by lateral 

interactions, with the error units, that mediate empirical priors. This selection 

stops the gossiping [hence actually sharpens responses among the laterally 

competing representations]” Friston (2005) p.829 

 

The drive towards ‘explaining away’ is thus consistent, in this specific architectural 

setting, with both the sharpening and the dampening of (different aspects of) early 

cortical responsexviii. Thus Spratling, in a recent formal treatment of this issuexix, suggests 

that any apparent contrast here reflects: 

 

 “a misinterpretation of the model  that may have resulted from the strong 

emphasis the predictive coding hypothesis places on the error-detecting nodes and 

the corresponding under-emphasis on the role of the prediction nodes in 

maintaining an active representation of the stimulus” Spratling (2008) p. 8 (my 

emphasis) 

 

What is most distinctive about this duplex architectural proposal (and where much of the 

break from tradition really occurs) is that it depicts the forward flow of information as 

solely conveying error, and the backwards flow as solely conveying predictions. The 

duplex architecture thus achieves a rather delicate balance between the familiar (there is 

still a cascade of feature-detection, with potential for selective enhancement, and with 

increasingly complex features represented by neural populations that are more distant 
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from the sensory peripheries) and the novel (the forward flow of sensory information is 

now entirely replaced by a forward flow of prediction error).  

 

This balancing act between cancelling out and selective enhancement is only made 

possible, it should be stressed, by positing the existence of  “two functionally distinct sub-

populations, encoding the conditional expectations of perceptual causes and the 

prediction error respectively” (Friston (2005), p.829). Functional distinctness need not, of 

course, imply gross physical separation. But a common conjecture in this literature 

depicts superficial pyramidal cells (a prime source of forward neuro-anatomical 

connections) as playing the role of error units, passing prediction error forwards, while 

deep pyramidal cells play the role of representation units, passing predictions (made on 

the basis of a complex generative model) downwards (see e.g. Mumford (1992), Friston 

(2005), (2009)). However it may (or may not) be realized, some form of functional 

separation is required. Such separation constitutes a central feature of the proposed 

architecture, and one without which it would be unable to combine the radical elements 

drawn from predictive coding with simultaneous support for the more traditional 

structure of increasingly complex feature detection and top-down signal enhancement. 

But essential as it is, this is a demanding and potentially problematic requirement, which 

we will return to in section 3.1 following. 

 

2.2 Encoding, Inference, and the ‘Bayesian Brain’. 

 

Neural representations, should the hierarchical predictive processing account prove 

correct, encode probability density distributionsxx in the form of a probabilistic generative 

model, and the flow of inference respects Bayesian principles that balance prior 

expectations against new sensory evidence.  This (Eliasmith (2007)) is a departure from 

traditional understandings of internal representation, and one whose full implications 

have yet to be understood. It means that the nervous system is fundamentally adapted to 

deal with uncertainty, noise, and ambiguity, and it requires some (perhaps several) 

concrete means of internally representing uncertainty. (Non-exclusive options here 



 22 

include the use of distinct populations of neurons, varieties of  ‘probabilistic population 

codes’ (Pouget, Dayan, and Zemel (2003)), and relative timing effects (Deneve (2008))   - 

for a very useful review see Vilares and Kording (2011)). Predictive processing accounts 

thus share what Knill and Pouget (2004, p.713) describe as the “basic premise on which 

Bayesian theories of cortical processing will succeed or fail”, viz that: 

 

“The brain represents information probabilistically, by coding and computing 

with probability density functions, or approximations to probability density 

functions” (op cit, P. 713) 

 

Such a mode of representation implies that when we represent a state or feature of the 

world, such as the depth of a visible object, we do so not using a single computed value 

but using a conditional probability density function that encodes “the relative probability 

that the object is at different depths Z, given the available sensory information” (op cit 

712). The same story applies to higher-level states and features. Instead of simply 

representing “CAT ON MAT” the probabilistic Bayesian brain will encode a conditional 

probability density function, reflecting the relative probability of this state of affairs (and 

any somewhat-supported alternatives) given the available information. This information-

base will include both the bottom up driving influences from multiple sensory channels, 

and top-down context-fixing information of various kinds. At first the system may avoid 

committing itself to any single interpretation, while confronting an initial flurry of error 

signals (which are said to constitute a major component of early evoked responses- see 

e.g. Friston (2005) p.829) as competing ‘beliefs’ propagate up and down the system. This 

is typically followed by rapid convergence upon a dominant theme (CAT, MAT), with 

further details (STRIPEY MAT, TABBY CAT) subsequently negotiated. The set-up thus 

favours a kind of recurrently negotiated  ‘gist-at-a-glance’ model, where we first identify 

the general scene (perhaps including general affective elements too – for a fascinating 

discussion see Barrett and Bar (2009)) followed by the details. This affords a kind of 

‘forest first, trees second’ approach (Hochstein and Ahissar (2002), Friston (2005) p.825).  
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This does not mean, however, that context effects will always take time to emerge and 

propagate downwardsxxi. For in many (indeed, most) real-life cases, substantial context 

information is already in place when new information is encountered. An apt set of priors 

is thus often already active, poised to impact the processing of new sensory inputs 

without further delay. This is important. The brain, in ecologically normal circumstances, 

is not just suddenly ‘turned on’ and some random or unexpected input delivered for 

processing. So there is plenty of room for top-down influence to occur even before a 

stimulus is presented. This is especially important in the crucial range of cases where we, 

by our own actions, help to bring the new stimulus about.  In the event that we already 

know we are in a forest (perhaps we have been hiking for hours) there has still been prior 

settling into a higher level representational state. But such settling need not occur within 

the temporal span following each new sensory inputxxii. Over whatever time-scale, though, 

the endpoint (assuming we form a rich visual percept) is the same. The system will have 

settled into a set of states that make mutually consistent bets concerning many aspects of 

the scene (from the general theme all the way down to more spatio-temporally precise 

information about parts, colours, and orientations etc.). At each level, the underlying 

mode of representation will remain thoroughly probabilistic, encoding a series of 

intertwined bets concerning all the elements (at the various spatio-temporal scales) that 

make up the perceived scene. 

 

In what sense are such systems truly Bayesian? According to Knill and Pouget:  

 

“The real test of the Bayesian coding hypothesis is in whether the neural 

computations that result in perceptual judgments or motor behaviour take into 

account the uncertainty available at each stage of the processing” Knill and Pouget 

(2004) 713 

 

That is to say, reasonable tests will concern how well a system deals with the uncertainties 

that characterize the information it actually manages to encode and process, and (I would 

add) the general shape of the strategies it uses to do so. There is increasing (though 
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mostly indirect- see 3.1 following) evidence that biological systems approximate, in 

multiple domains, the Bayesian profile thus understood.  To take just one example (for 

others, see section 3.1 following) Weiss et al (2002) - in a paper revealingly titled “Motion 

illusions as optimal percepts” - used an optimal Bayesian estimator (the so-called 

‘Bayesian ideal observer’) to show that a wide variety of psychophysical results, including 

many motion ‘illusions’, fall naturally out of the assumption that human motion 

perception implements just such an estimator mechanismxxiii. They conclude that: 

 

“Many motion ‘illusions’ are not the result of sloppy computation by various 

components in the visual system, but rather a result of a coherent computational 

strategy that is optimal under reasonable assumptions” Weiss et al (2002) p. 603 

 

Examples could be multiplied (see Knill and Pouget (2004) for a balanced review). At 

least in the realms of low-level, basic, and adaptively crucial, perceptual and motoric 

computations, biological processing may quite closely approximate Bayes’ optimality. But 

what researchers find in general is not that we humans are - rather astoundingly - ‘Bayes’ 

optimal’ in some absolute sense (i.e. responding correctly relative to the absolute 

uncertainties in the stimulus) but rather that we are often optimal, or near optimal, at 

taking into account the uncertainties that characterize the information that we actually 

command: the information that is made available by the forms of sensing and processing 

that we actually deploy (see Knill and Pouget (2004, p. 713)). That means, taking into 

account the uncertainty in our own sensory and motor signals, and adjusting the relative 

weight of different cues according to (often very subtle) contextual clues. Recent work 

confirms and extends this assessment, suggesting that humans act as rational Bayesian 

estimators, in perception and in action, across a wide variety of domains (Yu (2007), 

Berniker and Körding (2008), Körding, Tenenbaum, and Shadmehr (2007)).  

 

Of course, the mere fact that a system’s response profiles take a certain shape does not 

itself demonstrate that that system is implementing some form of Bayesian reasoning. In 

a limited domain, a look-up table could (Maloney and Mamassian (2009)) yield the same 
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behavioural repertoire as a ‘Bayes’ optimal’ system. Nonetheless, the hierarchical and 

bidirectional predictive processing story, if correct, would rather directly underwrite the 

claim that the nervous system approximates, using tractable computational strategies, a 

genuine version of Bayesian inference. The computational framework of hierarchical 

predictive processing realizes, using the signature mix of top-down and bottom-up 

processing, a robustly Bayesian inferential strategy, and there is mounting neural and 

behavioural evidence (again, see 3.1 following) that such a mechanism is somehow 

implemented in the brain. Experimental tests have also recently been proposed (Maloney 

and Mamassian (2009), Maloney and Zhang (In Press)) which aim to ‘operationalize’ the 

claim that a target system is (genuinely) computing its outputs using a Bayesian scheme, 

rather than merely behaving ‘as if’ it did so. This, however, is an area that warrants a great 

deal of further thought and investigation. 

 

Hierarchical predictive processing models also suggest something about the nature of the 

representation relation itself. To see this, recall (1.2 above) that hierarchical predictive 

coding, in common with other approaches deploying a cascade of top-down processing to 

generate low-level states from high-level causes, offers a way to get at the world from 

‘inside’ the black box. That procedure (which will work in all worlds where there is 

organism-detectable regularity in space or time - see Hosoya (2005), Schwarz, Hsu and 

Dayan (2007)) allows a learner reliably to match its internal generative model to the 

statistical properties of the signal source (the world) yielding contents that are, I submit, 

as ‘grounded’ (Harnad (1990)) and ‘intrinsic’  (Adams and Aizawa (2001)) as any 

philosopher could wish for. Such models thus deliver a novel framework for thinking 

about neural representation and processing, and a compelling take on the representation 

relation itself: one that can be directly linked (via the Bayesian apparatus) to rational 

processes of learning and belief fixation. 

 

2.3 The Delicate Dance Between Top-Down and Bottom-Up 

 



 26 

In the context of bidirectional hierarchical models of brain function, action-oriented 

predictive processing yields a new account of the complex interplay between top-down 

and bottom-up influences on perception and action, and perhaps ultimately of the 

relations between perception, action, and cognition.  

 

As noted by Hohwy (2007, p.320) the generative model providing the ‘top-down’ 

predictions is here doing much of the more traditionally ‘perceptual’ work, with the 

bottom-up driving signals really providing a kind of ongoing feedback on their activity 

(by fitting or failing to fit, the cascade of downward-flowing predictions). This procedure 

combines ‘top-down’ and ‘bottom–up’ influences in an especially delicate and potent 

fashion, and leads to the development of neurons that exhibit a “selectivity that is not 

intrinsic to the area but depends on interactions across levels of a processing hierarchy” 

(Friston (2003) p.1349). Hierarchical predictive coding delivers, that is to say, a 

processing regime in which context-sensitivity is fundamental and pervasive. 

 

 To see this, we need only reflect that the neuronal responses that follow an input (the 

‘evoked responses’) may be expected to change quite profoundly according to the 

contextualizing information provided by a current winning top-down prediction. The key 

effect here (itself familiar enough from earlier connectionist work using the ‘interactive 

activation’ paradigm – see e.g. Rumelhart and McClelland and Rumelhart (1981), 

Rumelhart, McClelland et al (1986)) is that “when a neuron or population is predicted by 

top-down inputs it will be much easier to drive than when it is not” Friston (2002) p. 240. 

This is because the best overall fit between driving signal and expectations will often be 

found by (in effect) inferring noise in the driving signal and thus recognizing a stimulus 

as for example, the letter ‘m’ (say, in the context of the word ‘mother’) even though the 

same bare stimulus, presented out of context or in most other contexts, would have been 

a better fit with the letter ‘n’xxiv. A unit normally responsive to the letter ‘m’ might, under 

such circumstances, be successfully driven by an n-like stimulus.  
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Such effects are pervasive in hierarchical predictive processing, and have far-reaching 

implications for various forms of neuroimaging. It becomes essential, for example, to 

control as much as possible for expectations when seeking to identify the response 

selectivity of neurons or patterns of neural activity. Strong effects of top-down 

expectation have also recently been demonstrated for conscious recognition, raising 

important questions about the very idea of any simple (i.e. context independent) ‘neural 

correlates of consciousness. Thus Melloni et al (2011) show that the onset time required 

to form a reportable conscious percept varies substantially (by around 100ms) according 

to the presence or absence of apt expectations, and that the neural (here, EEG) signatures 

of conscious perception vary accordingly - a result they go on to interpret using the 

apparatus of hierarchical predictive processing. Finally, in a particularly striking 

demonstration of the power of top-down expectations, Egner, Monti and Summerfield 

(2010) show that neurons in the fusiform face area (FFA) respond every bit as strongly to 

non-face (in this experiment, house) stimuli under high expectation of faces as they do to 

face-stimuli. In this study: 

 

“FFA activity displayed an interaction of stimulus feature and expectation factors, 

where the differentiation between FFA responses to face and house stimuli 

decreased linearly with increasing levels of face expectation, with face and house 

evoked signals being indistinguishable under high face expectation” Egner, Monti, 

and Summerfield (2010) p. 16607. 

 

Only under conditions of low face expectation was FFA response maximally different for 

the face and house probes, suggesting that “[FFA] responses appear to be determined by 

feature expectation and surprise rather than by stimulus features per se” op cit p.16601. 

The suggestion, in short, is that FFA (in many ways the paradigm case of a region 

performing complex feature detection) might be better treated as a face-expectation 

region rather than a face-detection region: a result that the authors interpret as favoring a 

hierarchical predictive processing model. The growing body of such results leads Muckli 

to comment that: 



 28 

 

“Sensory stimulation might be the minor task of the cortex, whereas its major task 

is to […] predict upcoming stimulation as precisely as possible” Muckli (2010) 

p.137 

 

In a similar vein, Rauss et al (in press) suggest that: 

 

 “neural signals are related less to a stimulus per se than to its congruence with 

internal goals and predictions, calculated on the basis of previous input to the 

system” Rauss et al (in press) 

 

Attention fits very neatly into this emerging unified picture, as a means of variably 

balancing the potent interactions between top-down and bottom-up influences by 

factoring in their precision (degree of uncertainty). This is achieved by altering the gain 

(the ‘volume’ to use a common analogy) on the error-units accordingly. The upshot of 

this is to “control the relative influence of prior expectations at different levels” (Friston 

(2009) p. 299). In recent work effects of the neurotransmitter dopamine are presented as 

one possible neural mechanism for encoding precision (see Fletcher and Frith (2009) p. 

53-54, who refer the reader to work on prediction error and the mesolimbic 

dopaminergic system such as Holleman and Schultz (1998), Waelti et al (2001)). Greater 

precision (however encoded) means less uncertainty, and is reflected in a higher gain on 

the relevant error units (see Friston (2005), (2010), Friston, Daunizeau, and Kiebel 

(2009)). Attention, if this is correct, is simply one means by which certain error-unit 

responses are given increased weight, hence becoming more apt to drive learning and 

plasticity, and to engage compensatory action.  

 

More generally, this means that the precise mix of top-down and bottom-up influence is 

not static or fixed. Instead, the weight that is given to sensory prediction error is varied 

according to how reliable (how noisy, certain, or uncertain) the signal is taken to be. This 

is (usually) good news, as it means we are not (not quite) slaves to our expectations. 
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Successful perception requires the brain to minimize surprisal. But the agent is able to see 

very (agent) surprising things, at least in conditions where the brain assigns high 

reliability to the driving signal. Importantly, that requires that other high-level theories, 

though of an initially agent-unexpected kind, win out so as to reduce surprisal by 

explaining away the highly-weighted sensory evidence. In extreme and persistent cases 

(more on this in 4.2 following) this may require gradually altering the underlying 

generative model itself, in what Fletcher and Frith (2009, p.53) nicely describe as a 

‘reciprocal interaction between perception and learning’. 

 

All this makes the lines between perception and cognition fuzzy, perhaps even vanishing. 

In place of any real distinction between perception and belief we now get variable 

differences in the mixture of top-down and bottom-up influence, and differences of 

temporal and spatial scale in the internal models that are making the predictions. Top 

level (more ‘cognitive’) modelsxxv intuitively correspond to increasingly abstract 

conceptions of the world and these tend to capture or depend upon regularities at larger 

temporal and spatial scales. Lower level (more ‘perceptual’) ones capture or depend upon 

the kinds of scale and detail most strongly associated with specific kinds of perceptual 

contact. But it is the precision-modulated constant content-rich interactions between 

these levels, often mediated by ongoing motor action of one kind or another, that now 

emerges as the heart of intelligent, adaptive response.  

 

These accounts thus appear to dissolve, at the level of the implementing neural 

machinery, the superficially clean distinction between perception and knowledge/belief. 

To perceive the world just is to use what you know to explain away the sensory signal 

across multiple spatial and temporal scales. The process of perception is thus inseparable 

from rational (broadly Bayesian) processes of belief fixation, and context (top down) 

effects are felt at every intermediate level of processing. As thought, sensing, and 

movement here unfold, we discover no stable or well-specified interface or interfaces 

between cognition and perception. Believing and perceiving, although conceptually 

distinct, emerge as deeply mechanically intertwined. They are constructed using the same 
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computational resources, and (as we shall see in 4.2) are mutually, reciprocally, 

entrenching.  

 

Summary So Far 

 

Action-oriented (hierarchical) predictive processing models promise to bring cognition, 

perception, action, and attention together within a common framework. This framework 

suggests probability density distributions induced by hierarchical generative models as 

our basic means of representing the world, and prediction-error minimization as the 

driving force behind learning, action-selection, recognition, and inference. Such a 

framework offers new insights into a wide range of specific phenomena including non-

classical receptive field effects, bi-stable perception, cue integration, and the pervasive 

context-sensitivity of neuronal response. It makes rich and illuminating contact with 

work in cognitive neuroscience while boasting a firm foundation in computational 

modelling and Bayesian theory. It thus offers what is arguably the first truly systematic 

bridgexxvi between three of our most promising tools for understanding mind and reason: 

cognitive neuroscience, computational modelling, and probabilistic Bayesian approaches 

to dealing with evidence and uncertainty. 

 

3. From Action-Oriented Predictive Processing to an Architecture of Mind. 

 

Despite that truly impressive list of virtues, both the hierarchical predictive processing 

family of models and their recent generalizations to action face a number of important 

challenges, ranging from the evidential (what are the experimental and neuroanatomical 

implications, and to what extent are they borne out by current knowledge and 

investigations?) to the conceptual (can we really explain so much about perception and 

action by direct appeal to a fundamental strategy of minimizing errors in the prediction 

of sensory input?) to the more methodological (to what extent can these accounts hope to 

illuminate the full shape of the human cognitive architecture?) In this section I address 
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each challenge in turn, before asking (section 4) how such models relate to our conscious 

mental life. 

 

3.1 The Neural Evidence 

 

Direct neuroscientific testing of the hierarchical predictive coding model, and of its 

action-oriented extension, remains in its infancy. The best current evidence tends to be 

indirect, and comes in two main forms. The first (which is highly indirect) consists in 

demonstrations of precisely the kinds of optimal sensing and motor control that the 

‘Bayesian brain hypothesis’  (2.2 above) suggests. Good examples here include compelling 

bodies of work on cue integration (see also 2.2 above and 4.3 following) showing that 

human subjects are able optimally to weight the various cues arriving through distinct 

sense modalities, doing so in ways that delicately and responsively reflect the current 

(context-dependent) levels of uncertainty associated with the information from different 

channels (Ernst and Banks (2002), Knill and Pouget (2004) – and for further discussion, 

see Mamassian et al (2002), Rescorla (In Press)). This is beautifully demonstrated, in the 

case of combining cues from vision and touch, by Bayesian models such as Helbig and 

Ernst (2007). Similar results have been obtained for motion perception, neatly accounting 

for various illusions of motion perception by invoking statistically-valid priors that favor 

slower and smoother motions – see Weiss, Simoncelli, and Adelson (2002), Ernst (2010)). 

Another example is the Bayesian treatment of color perception (see Brainerd (2009)) 

which again accounts for various known effects (here, color constancies and some color 

illusions) in terms of optimal cue combination.  

 

The success of the Bayesian program in these arenas (for some more examples, see 

Rescorla (In Press) and section 4.4 following) is impossible to doubt. It is thus a major 

virtue of the hierarchical predictive coding account that it effectively implements a 

computationally tractable version of the so-called ‘Bayesian Brain Hypothesis’ (Knill and 

Pouget (2004), Doya et al (eds) 2007)- see also Friston (2003), (2005), and comments in 

1.2 and  2.2 above). But behavioral demonstrations of Bayesian-like performance, though 
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intrinsically interesting and clearly suggestive, cannot establish strong conclusions about 

the shape of the mechanisms generating those behaviors.  

 

More promising in this regard are other forms of indirect evidence, such as the ability of 

computational simulations of predictive coding strategies to reproduce and explain a 

variety of observed effects. These include non-classical receptive field effects, repetition 

suppression effects, and the bi-phasic response profiles of certain neurons involved in 

low-level visual processing.  

 

Thus consider (Rao and Sejnowski (2002)) non-classical receptive field effects. In one 

such effect, an oriented stimulus yields a strong response from a cortical cell but that 

response is suppressed when the surrounding region is filled with a stimulus of identical 

orientation, and is enhanced when the orientation of the central stimulus is orthogonal to 

those of the surrounding region. This is a surprising set of features. A powerful 

explanation of this result, Rao and Sejnowksi (2002) suggest, is that the observed neural 

response here signals error rather than some fixed content. It is thus smallest when the 

central stimulus is highly predictable from the surrounding ones, and largest when it is 

actively counter-predicted by the surroundings. A related account (Rao and Ballard 

(1999), based on the simulation study sketched in 1.2 above)) explains ‘end-stopping’ 

effects, in which a lively neural response to a preferred stimulus such as an oriented line 

segment ceases or becomes reduced when the stimulus extends farther than the neuron’s 

standard receptive field. Here too, computational simulations using the predictive coding 

strategy displayed the same effect. This is because is the natural images used to train the 

network contained many more instances of these longer line segments, facilitating 

prediction in (and only in) such cases. Extended line segments are thus more predictable, 

so error-signaling responses are reduced or eliminated. In short, the effect is explained 

once more by the assumption that activity in these units is signaling error/mismatch. 

Similarly, Jehee and Ballard (2009) offer a predictive processing account of ‘biphasic 

response dynamics’ in which the optimal stimulus for driving a neuron (such as certain 

neurons in LGN - lateral geniculate nucleus) can reverse (e.g. from preferring bright to 
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preferring dark) in a short (20 ms) space of time. Once again the switch is neatly 

explained as a reflection of a unit’s functional role as an error or difference detector rather 

than a feature detector as such. In such cases, the predictive coding strategy (1.1 above) is 

in full evidence since: 

 

“Low-level visual input [is] replaced by the difference between the input and a 

prediction from higher-level structures….higher-level receptive fields…represent 

the predictions of the visual world while lower-level areas…signal the error 

between predictions and the actual visual input” Jehee and Ballard (2009) p.1 

 

 

Finally, consider the case of ‘repetition suppression’. Multiple studies (for a recent review, 

see Grill-Spector et al (2006)) have shown that stimulus-evoked neural activity is reduced 

by stimulus repetitionxxvii. Summerfield et al (2008) manipulated the local likelihood of 

stimulus repetitions, showing that the repetition-suppression effect is itself reduced when 

the repetition is improbable/unexpected. The favored explanation is (again) that 

repetition normally reduces response because it increases predictability (the second 

instance was made likelier by the first) and thus reduces prediction error.  Repetition 

suppression thus also emerges as a direct effect of predictive processing in the brain, and 

as such its severity may be expected to vary (just as Summerfield et al found) according to 

our local perceptual expectations. In general then, the predictive coding story offers a very 

neat and unifying explanation, of a wide variety of such contextual effects.  

 

Can we find more direct forms of evidence too? Functional imaging plays an increasing 

role here. For example, an fMRI study by Murray et al (2002) revealed just the kinds of 

relationships posited by the predictive processing (hierarchical predictive coding) story. 

As higher level areas settled into an interpretation of visual shape, activity in V1 was 

dampened, consistent with the successful higher level predictions being used to explain 

away (cancel out) the sensory data. More recently, Alink et al (2010) found decreased 

responses for predictable stimuli using variants on an apparent motion illusion, while den 
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Ouden et al (2010) report similar results using arbitrary contingencies that were 

manipulated rapidly during the course of their experimentsxxviii. Finally, the study by 

Egner, Monti, and Summerfield (2010) (and described in 2.3 above) went on to compare, 

in simulation, several possible models that might be used to account for their results. The 

authors found a predictive processing regime involving the co-presence of representation 

and error units (2.1 above) to offer by far the best fit for their data. In that best-fit 

simulation, error (‘face-surprise’) units are modeled as contributing twice as much to the 

fMRI signal as representation (‘face-expectation’) units, leading the authors to comment 

that: 

 

“the current study is to our knowledge the first investigation to formally and 

explicitly demonstrate that population responses in visual cortex are in fact better 

characterized as a sum of feature expectation and surprise responses than by 

bottom-up feature detection…” Egner et al (2010) 16607 

 

The predictive processing model also suggests testable hypotheses concerning the ways in 

which interfering (e.g. using TMS - transcranial magnetic stimulation - or other methods) 

with the message passing routines linking higher to lower cortical areas should impact 

performance. To take one specific example, the model of binocular rivalry rehearsed in 

section 1.4 above predicts that: 

 

“LGN and blind spot representation activity measured with fMRI will not suggest 

that rivalry is resolved before binocular convergence, if deprived of backwards 

signals from areas above binocular convergence” Hohwy, Roepstorff, and Friston 

(2008) p.699 

 

In general, if the predictive processing story is correct, we expect to see powerful context 

effects propagating quite low down the processing hierarchy. The key principle – and one 

that also explains many of the observed dynamics of evoked responses - is that (subject to 

the caveats mentioned earlier concerning already active expectations) “representations at 
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higher levels must emerge before backward afferents can reshape the response profile of 

neurons in lower areas” (Friston (2003) p.1348). In the case of evoked responses, the 

suggestion (Friston (2005) section 6) is that an early component often tracks an initial 

flurry of prediction error: one that is soon suppressed (assuming the stimulus is not novel 

or encountered out of its normal context) by successful predictions flowing backwards 

from higher areas. Such temporal delays, which are exactly what one would expect if 

perception involves recruiting top-level models to explain away sensory data, are now 

widely reported in the literature (see e.g. Pack and Born (2001), Born et al (2009)).  

 

One extremely important and as yet not well-tested implication of the general 

architectural form of these models is (recall 2.1 above) that each level of processing 

should contain two functionally distinct sub-populations of units. One sub-population, 

recall, is doing the ‘real’ work of representing the current sensory cause: these units 

(‘representational neurons’ or ‘state units’) encode the area’s best guess, in context as 

processed so far, at the current stimulus. They thus encode what Friston (2005, p.829) 

describes as the area’s ‘conditional expectations of perceptual causes’. The other sub-

population is in the business of encoding precision-weighted prediction errors: these 

units (so-called ‘error units’) fire when there is a mismatch between what is predicted and 

what is apparently being observed. The two sets of units are assumed to interact in the 

manner prescribed by the hierarchical predictive coding model. That is to say, the error 

units process signals from the representation units both at their own level and at the level 

above, and the representation units send signals to the error units both at their own level 

and at the level below. Forward connections thus convey error, while backwards 

connections are free to construct (in a potentially much more complex, and highly non-

linear fashion) predictions that aim to cancel out the error. Unfortunately, direct, 

unambiguous neural evidence for these crucial functionally distinct sub-populations is 

still missing. Hence: 
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“...one limitation of these models – and of predictive coding in general- is that to 

date no single neuron study has systematically pursued the search for sensory 

prediction error responses” Summerfield and Egner (2009, p.408) 

 

The good news is that there is, as we saw, mounting and converging indirect evidence for 

such a cortical architecture in the form (largely) of increased cortical responses to sensory 

surprise (surprisal). Crucially, there also exists (2.1 above) a plausible neuronal 

implementation for such a scheme involving superficial and deep pyramidal cells. 

Nonetheless much more evidence is clearly needed for the existence of the clean 

functional separation (between the activity of different neuronal features or sub-

populations) required by these modelsxxix.  

 

3.2 Scope and Limits 

 

“In the ultimate stable state, the deep pyramidals [conveying predictions 

downwards] would send a signal that perfectly predicts what each lower area is 

sensing, up to expected levels of noise, and the superficial pyramidals [conveying 

prediction errors upwards] wouldn’t fire at all.” Mumford (1992) p.247 

 

“In some sense, this is the state that the cortex is trying to achieve: perfect 

prediction of the world, like the oriental Nirvana, as Tai-Sing Lee suggested to me, 

when nothing surprises you and new stimuli cause the merest ripple in your 

consciousness” (op cit, p.247 footnote ♯ 5) 

 

There is a very general worry that is sometimes raised in connection with the large-scale 

claim that cortical processing fundamentally aims to minimize prediction error, thus 

quashing the forward flow of information and achieving what Mumford (above) 

evocatively describes as the ‘ultimate stable state’. It can be put like this: 
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“How can a neural imperative to minimize prediction error by enslaving 

perception, action, and attention accommodate the obvious fact that animals 

don’t simply seek a nice dark room and stay in it? Surely staying still inside a 

darkened room would afford easy and nigh-perfect prediction of our own 

unfolding neural states? Doesn’t the story thus leave out much that really matters 

for adaptive success: things like boredom, curiosity, play, exploration, foraging, 

and the thrill of the hunt?” 

 

The simple response (correct, as far as it goes) is that animals like us live and forage in a 

changing and challenging world, and hence ‘expect’ to deploy quite complex ‘itinerant’ 

strategies (Friston, Daunizeau, and Kiebel (2009), Friston (2010)) to stay within our 

species-specific window of viability. Change, motion, exploration, and search are 

themselves valuable for creatures living in worlds where resources are unevenly spread 

and new threats and opportunities continuously arise. This means that change, motion, 

exploration, and search themselves become predicted, and poised to enslave action and 

perception accordingly. One way to unpack this idea (see Friston (2010b) p.8) would be 

to look at the possible role of priors that induce motion through a state space until an 

acceptable, though possibly temporary or otherwise unstable, stopping point (an 

attractor) is found. In precisely this vein Friston (2011b, p.113) comments that “some 

species are equipped with prior expectations that they will engage in exploratory or social 

play”.  

 

The whole shape of this space of prior expectations is specific to different species and may 

also vary as a result of learning and experience. Hence nothing in the large-scale story 

about prediction error minimization dictates any general or fixed balance between what is 

sometimes glossed as ‘exploration’ versus ‘exploitation’ (for some further discussion of 

this issue, see Friston and Stephan (2007) p. 435-436). Instead, different organisms 

amount (Friston (2011b)) to different ‘embodied models’ of their specific needs and 

environmental niches, and their expectations and predictions are formed, encoded, 

weighted, and computed against such backdrops. This is both good news, and bad news. 
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It’s good, because it means the stories on offer can indeed accommodate all the forms of 

behaviour (exploration, thrill-seeking etc) we see. But it’s bad (or at least, limiting) 

because it means that the accounts don’t in themselves tell us much at all about these key 

features: features which nonetheless condition and constrain an organism’s responses in a 

variety of quite fundamental ways.  

 

In one way, of course, this is clearly unproblematic. The briefest glance at the staggering 

variety of biological (even mammalian) life forms tells us that whatever fundamental 

principles are sculpting life and mind, they are indeed compatible with an amazing 

swathe of morphological, neurological, and ethological outcomes. But in another way it 

can still seem disappointing. If what we want to understand is the specific functional 

architecture of the human mind, the distance between these very general principles of 

prediction-error minimization and the specific solutions to adaptive needs that we 

humans have embraced remains daunting.  As a simple example, notice that the 

predictive processing account leaves wide open a variety of deep and important questions 

concerning the nature and format of human neural representation. The representations 

on offer are, we saw, constrained to be probabilistic (and generative model based) 

through and through. But that is compatible with the use of the probabilistic-generative 

mode to encode information using a wide variety of different schemes and surface forms. 

Consider the well-documented differences in the way the dorsal and ventral visual 

streams code for attributes of the visual scene. The dorsal stream (Milner and Goodale 

(2006)) looks to deploy modes of representation and processing that are at some level of 

interest quite distinct from those coded and computed in the ventral stream. And this will 

be true even if there is indeed, at some more fundamental level, a common computational 

strategy at work throughout the visual and the motor cortex.  

 

Discovering the nature of various inner representational formats is thus representative of 

the larger project of uncovering the full shape of the human cognitive architecture. It 

seems likely, as argued by Eliasmith (2007) that this larger project will demand a complex 

combination of insights, some coming ‘top-down’ from theoretical (mathematical, 
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statistical, and computational) models, and others coming  ‘bottom up’ from 

neuroscientific work that uncovers the brain’s actual resources as sculpted by our unique 

evolutionary (and – as we’ll next see- sociocultural) trajectory. 

 

3.3 Neats versus Scruffies (21st Century Replay). 

 

Back in the late nineteen seventies and early nineteen eighties (the heyday of classical 

Artificial Intelligence) there was a widely held view that two personality types were 

reflected in theorizing about the human mind. These types were dubbedxxx, by Roger 

Schank and Robert Abelson, the ‘neats’ versus the ‘scruffies’. Neats believed in a few very 

general, truth-conducive principles underlying intelligence. Scruffies saw intelligence as 

arising from a varied bag of tricks: a rickety tower of rough and ready solutions to 

problems, often assembled using various quick patches and local ploys, and greedily 

scavenging the scraps and remnants of solutions to other, historically prior, problems and 

needs. Famously, this can lead to scruffy, unreliable, or sometimes merely unnecessarily 

complex solutions to ecologically novel problems such as planning economies, building 

railway networks, and maintaining the internet. Such historically path-dependent 

solutions were sometimes called ‘kluges’ –see e.g. Clark (1987) Marcus (2008). Neats 

favoured logic and provably correct solutions, while scruffies favoured whatever worked 

reasonably well, fast enough, in the usual ecological setting, for some given problem. The 

same kind of division emerged in early debates between connectionist and classical AI 

(see e.g. Sloman (1990)) with connectionists often accused of developing systems whose 

operating principles (after training on some complex set of input-output pairs) was 

opaque and ‘messy’. The conflict reappears in more recent debates (Griffiths et al (2010), 

McClelland et al (2010)) between those favouring ‘structured probabilistic approaches’ 

and those favouring ‘emergentist’ approaches (where these are essentially connectionist 

approaches of the parallel distributed processing variety)xxxi.  

 

My own sympathies (Clark (1989), (1997)) have always lain more on the side of the 

scruffies. Evolved intelligence, it seemed to me (Clark (1987)) was bound to involve a 
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kind of unruly motley of tricks and ploys, with significant path-dependence, no premium 

set on internal consistency, and fast effective situated response usually favoured at the 

expense of slower, more effortful, even if more truth-conducive modes of thought and 

reasoning. Seen through this lens, the ‘Bayesian brain’ seems, at first glance, to offer an 

unlikely model for evolved biological intelligence. Implemented by hierarchical predictive 

processing, it posits a single fundamental kind of learning algorithm (based on generative 

models, predictive coding, and prediction error minimization) that approximates the 

rational ideal of Bayesian belief update. Suppose such a model proves correct. Would this 

amount to the final triumph of the neats over the scruffies? I suspect it would not, and for 

reasons that shed additional light upon the questions about scope and limits raised in the 

previous section.  

 

Favoring the ‘neats’, we have encountered a growing body of evidence (2.2 and 2.3 above) 

showing that for many basic problems involving perception and motor control, human 

agents (as well as other animals) do indeed manage to approximate the responses and 

choices of optimal Bayesian observers and actors. Nonetheless, a considerable distance 

still separates such models from the details of their implementation in humans or other 

animals. It is here that the apparent triumph of the neats over the scruffies may be called 

into question. For the Bayesian brain story tells us, at most, what the brain (or better, the 

brain in action) manages to compute. It also suggests a good deal about the forms of 

representation and computation that the brain must deploy: for example, it suggests (2.2 

above) that it must deploy a probabilistic representation of sensory information, that it 

must take into account uncertainty in its own sensory signals, estimate the ‘volatility’ 

(frequency of change) of the environment itself (Yu (2007)), and so on. But that still 

leaves plenty of room for debate and discovery as regards the precise shape of the large-

scale cognitive architecture within which all this occurs. 

 

The hierarchical predictive processing account takes us a few important steps further. It 

offers a computationally tractable approximation to true Bayesian inference. It says 

something about the basic shape of the cortical micro-circuitry. And, at least in the 
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formulations I have been considering, it predicts the presence of distinct neural 

encodings for representation and error. But even taken together, the mathematical model 

(the Bayesian brain) and the hierarchical, action-oriented, predictive processing 

implementation fail to specify the overall form of a cognitive architecture. They fail to 

specify, for example, how the brain (or better, the brain in the context of embodied 

action) divides its cognitive labours between multiple cortical and subcortical areas, what 

aspects of the actual world get sensorially coded in the first place, or how best to navigate 

the exploit-explore continuum (the grain of truth in the ‘darkened room’ worry discussed 

in 3.2 above)). It also leaves unanswered a wide range of genuine questions concerning 

the representational formats used by different brain areas or for different kinds of 

problems. This problem is only compounded once we reflect (Anderson (2007), 3.4 

following) that the brain may well tackle many problems arising later in its evolutionary 

trajectory by cannily redeploying resources that were once used for other purposes.  

 

In the most general terms, then, important questions remain concerning the amount of 

work (where the goal is that of understanding the full human cognitive architecture) that 

will be done by direct appeal to action-oriented predictive processing and the amount 

that will still need to be done by uncovering evolutionary and developmental trajectory-

reflecting tricks and ploys: the scruffy kluges that gradually enabled brains like ours to 

tackle the complex problems of the modern world.  

 

3.4 Situated Agents 

 

We may also ask what, if anything, the hierarchical predictive processing perspective 

suggests concerning situated, world-exploiting agency (Thelen and Smith (1994), 

Hutchins (1995), Wilson (1994) (2004), Haugeland (1998), Hurley (1998), Clark (1997) 

(2008), Clark and Chalmers (1998), Rowlands (1999) (2006), Noë (2004), (2009), Wheeler 

(2005), Menary (2007)). At least on the face of it, the predictive processing story seem to 

pursue a rather narrowly neurocentric focus, albeit one that reveals (1.5 above) some truly 

intimate links between perception and action. But dig a little deeper and what we discover 
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is a model of key aspects of neural functioning that makes structuring our worlds 

genuinely continuous with structuring our brains and sculpting our actions. Cashing out 

all the implications of this larger picture is a future project, but a brief sketch may help set 

the scene. 

 

Recall (1.5 and 1.6 above) that these models display perception and action working in 

productive tandem to reduce ‘surprisal’ (where this measures the implausibility of some 

sensory state given a model of the world). Perception reduces surprisal by matching 

inputs with prior expectations. Action reduces surprisal by altering the world (including 

moving the body) so that inputs  conform with expectations. Working together, 

perception and action serve to selectively sample and actively sculpt the stimulus array. 

These direct links to active sculpting and selective sampling suggest deep synergies 

between the hierarchical predictive processing framework and work in embodied and 

situated cognition. For example, work in mobile robotics already demonstrates a variety 

of concrete ways in which perception and behaviour productively interact via loops 

through action and the environment: loops that may now be considered as affording 

extra-neural opportunities for the minimization of prediction error. In precisely this vein, 

Verschure et al (2003), in work combining robotics and statistical learning, note that   

“behavioural feedback modifies stimulus sampling and so provides an additional extra-

neuronal path for the reduction of prediction errors”. (Verschure et al (2003) p.623) 

 

More generally, consider recent work on the ‘self-structuring of information flows’. This 

work, as the name suggests, stresses the importance of our own action-based structuring 

of sensory input (for example, the linked unfolding across multiple sensory modalities 

that occurs when we see, touch, and hear an object that we are actively manipulating). 

Such information self-structuring has been shown to promote learning and inference – 

see e.g. Pfeifer, et al (2007) and discussion in Clark (2008). Zahedi et al (in press) translate 

these themes directly into the present framework using robotic simulations in which the 

learning of complex co-ordination dynamics is achieved by maximizing the amount of 

predictive information present in sensorimotor loops.  
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Extensions into the realm of social action and multi-agent co-ordination are then close to 

hand. For a key proximal goal of information self-structuring, considered from the 

action-oriented predictive processing perspective, is the reduction of mutual prediction 

error as we collectively negotiate new and challenging domains (see, for example, recent 

work on synchronization and shared musical experience (Overy & Molnar-Szakacs  

(2009)) and the ‘culture as patterned practices’ approach suggested by Roepstorff, 

Niewöhner, and Beck (2010)). Such a perspective, by highlighting situated practice, very 

naturally encompasses various forms of longer-term material and social environmental 

structuring. Using a variety of tricks, tools, notations, practices, and media, we structure 

our physical and social worlds so as to make them friendlier for brains like ours. We 

colour-code consumer products, we drive on the right (or left), paint white lines on roads, 

and post prices in supermarkets. At multiple time-scales, and using a wide variety of 

means (including words, equations, graphs, other agents, pictures, and all the tools of 

modern consumer electronics) we thus stack the dice so that we can more easily minimize 

costly prediction errors in an endlessly empowering cascade of contexts from shopping 

and socializing, to astronomy, philosophy, and logic.  

 

Consider, from this perspective, our many symbol-mediated loops into material culture 

via notebooks, sketchpads, iphones, and (Pickering and Garrod (2007)) conversations 

with other agents (and for some intriguing speculations concerning the initial emergence 

of all those discrete symbols in predictive, probabilistic contexts, see König, and Krüger 

(2006)). Such loops are effectively enabling new forms of reentrant processing. They take 

a highly processed cognitive product (such as an idea about the world), clothe it in public 

symbols, and launch it out into the world so that it can re-enter our own system as a 

concrete perceptible (Clark (2006) (2008)), and one now bearing highly informative 

statistical relations to other such linguaform perceptiblesxxxii. It is courtesy of all that 

concrete public vehicling in spoken words, written text, diagrams, and pictures that our 

best models of reality (unlike those of other creatures) are stable, re-inspectable objects 

apt for public critique and refinement. Our best models of the world are thus the basis for 
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cumulative communally distributed reasoning, rather than just the means by which 

individual thoughts occur. The same potent processing regimes, now targeting these 

brand new types of statistically-pregnant ‘designer inputs’, are then enabled to discover 

and refine new generative models, latching onto (and at times actively creating) ever 

more abstract structure in the world. Action and perception thus work together to reduce 

prediction error against the more slowly evolving backdrop of a culturally distributed 

process that spawns a succession of designer environments whose impact on the 

development (e.g. Smith and Gasser (2005)) and unfolding of human thought and reason 

can hardly be over-estimated. 

 

Such culturally mediated processes may incur costs (3.3 above) in the form of various 

kinds of path-dependence (Arthur (1994)) in which later solutions build on earlier ones. 

In the case at hand, path-based idiosyncrasies may become locked in as material artifacts, 

institutions, notations, measuring tools, and cultural practices. But it is that very same 

trajectory-sensitive process that delivers the vast cognitive profits that flow from the slow, 

multi-generational development of stacked, complex ‘designer environments’ for 

thinking such as mathematics, readingxxxiii, writing, structured discussion, and schooling, 

in a process that Sterelny (2003) nicely describes as ‘incremental downstream epistemic 

engineering’.  The upshot is that the human-built environment becomes a potent source 

of new intergenerationally transmissible structure that surrounds our biological brains 

(see e.g. Oyama (1999), Griffiths & Gray (2001), Sterelny (2007), Stotz (2010), Wheeler 

and Clark (2011), Iriki and Taoka (2012)).  

 

What are the potential effects of such stacked and transmissible designer environments 

upon prediction-driven learning in cortical hierarchies? Such learning routines make 

human minds permeable, at multiple spatial and temporal scales, to the statistical 

structure of the world as reflected in the training signals. But those training signals are 

now delivered as part of a complex developmental web that gradually comes to include all 

the complex regularities embodied in the web of statistical relations among the symbols 

and other forms of socio-cultural scaffolding in which we are immersed.  We thus self-
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construct a kind of rolling  ‘cognitive niche’ able to induce the acquisition of generative 

models whose reach and depth far exceeds their apparent base in simple forms of sensory 

contact with the world. The combination of ‘iterated cognitive niche construction’ and 

profound neural permeability by the statistical structures of the training environment is 

both potent and self-fueling. When these two forces interact, repeatedly reconfigured 

agents are enabled to operate in repeatedly reconfigured worlds, and the human mind 

becomes a constantly moving target. The full potential of the prediction-error 

minimization model of how cortical processing fundamentally operates will emerge only 

(I submit) when that model is paired with an appreciation of what immersion in all those 

socio-cultural designer environments can do (for some early steps in this direction, see 

Roepstorff, Niewöhner, and Beck (2010)). Such a combined approach would implement a 

version of so-called ‘neuroconstructivism’ (Mareschal et al (2007)) which asserts that: 

 

"The architecture of the brain.. and the statistics of the environment, [are] not 

fixed. Rather, brain-connectivity is subject to a broad spectrum of input-, 

experience-, and activity-dependent processes which shape and structure its 

patterning and strengths… These changes, in turn, result in altered interactions 

with the environment, exerting causal influences on what is experienced and 

sensed in the future” (Sporns (2007) p.179) 

  

All this suggests a possible twist upon the worries (3.2 and 3.3 above) concerning the 

ability of the predictive processing framework to specify a full-blown cognitive 

architecture. Perhaps that lack is not a vice but a kind of virtue? For what is really on 

offer, or so it seems to me, is best seen as a framework whose primary virtue is to display 

some deep unifying principles covering perception, action, and learning. That framework 

in turn reveals us as highly responsive to the statistical structures of our environments, 

including the cascade of self-engineered ‘designer environments’. It thus offers a standing 

invitation to evolutionary, situated, embodied, and distributed approaches to help ‘fill in 

the explanatory gaps’ while delivering a schematic but fundamental account of the 
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complex and complementary roles of perception, action, attention, and environmental 

structuring.  

 

4. Content and Consciousness 

 

How, finally, do the accounts on offer relate to a human mental life?  This, of course, is 

the hardest – though potentially the most important - question of all. I cannot hope to 

adequately address it in the present treatment, but a few preliminary remarks may help to 

structure a space for subsequent discussion. 

 

4.1 Agency and Experience 

  

To what extent, if any, do these stories capture or explain facts about what we might think 

of as personal (or agent-level) cognition- the flow of thoughts, reasons, and ideas that 

characterize daily conscious thought and reason? A first (but fortunately merely 

superficial) impression is that they fall far short of illuminating personal level experience. 

For example, there seems to be a large disconnect between ‘surprisal’ (the implausibility 

of some sensory state given a model of the world – see 1.6 above) and agent-level surprise. 

This is evident from the simple fact that the percept that, overall, best minimizes surprisal 

(hence minimizes prediction errors) ‘for’ the brain may well be, for me the agent, some 

highly surprising and unexpected state of affairs – imagine, for example, the sudden 

unveiling of a large and doleful elephant elegantly smuggled onto the stage by a 

professional magician . 

 

The two perspectives are, however, easily reconciled. The large and doleful elephant  is 

best understood as improbable but not (at least not in the relevant sense - recall 3.2 

above) surprising. Instead, that percept is the one that best respects what the system 

knows and expects about the world, given the current combination of driving inputs and 

assigned precision (reflecting the brain’s degree of confidence in the sensory signal). 

Given the right driving signal and a high enough assignment of precision, top-level 
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theories of an initially agent-unexpected kind can still win out so as to explain away that 

highly-weighted tide of incoming sensory evidence. The sight of the doleful elephant  may 

then emerge as the least surprising (least ‘surprisal-ing’!) percept available, given the 

inputs, the priors, and the current weighting on sensory prediction error. Nonetheless, 

systemic priors did not render that percept very likely in advance, hence (perhaps) the 

value to the agent of the feeling of surprise.  

 

The broadly Bayesian framework can also seem at odds with the facts about conscious 

perceptual experience for a different reason. The world, it might be said, does not look as 

if it is encoded as an intertwined set of probability density distributions! It looks unitary 

and, on a clear day, unambiguous. But this phenomenology again poses no real challenge. 

What is on offer, after all, is a story about the brain’s way of encoding information about 

the world. It is not directly a story about how things seem to agents deploying that means 

of encoding information. There is clearly no inconsistency in thinking that the brain’s 

pervasive use of probabilistic encoding might yield conscious experiences that depict a 

single, unified and quite unambiguous scene. Moreover, in the context of an active world-

engaging system, such an outcome makes adaptive sense. For the only point of all that 

probabilistic betting is to drive action and decision, and action and decision lack the 

luxury of being able to keep all options indefinitely alive. It would do the evolved creature 

no good at all to keep experiencing the scene as to some degree uncertain if the current 

task requires a firm decision, and if its neural processing has already settled on a good, 

strongly supported bet as to what’s (most probably) out there.  

 

One way to begin to cash that out is to recall that biological systems will be informed by a 

variety of learnt or innate ‘hyperpriors’ concerning the general nature of the world. One 

such hyperprior, as remarked during the discussion of binocular rivalry in section 1.4, 

might be that there is only one object (one cause of sensory input) in one place, at a given 

scale, at a given momentxxxiv. Another – more germane to the present discussion - might 

be that the world is usually in one determinate state or another. To implement this, the 

brain mightxxxv simply use a form of probabilistic representation in which each 
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distribution has a single peak (meaning that each overall sensory state has a single best 

explanation). This would rule out true perceptual ambiguity while leaving plenty of room 

for the kind of percept-switching seen in the binocular rivalry cases. The use of such a 

representational form would amount to the deployment of an implicit formal hyperprior 

(formal, because it concerns the form of the probabilistic representation itself)  to the 

effect that our uncertainty can be described using such a uni-modal probability 

distribution. Such a prior makes adaptive sense, given the kinds of brute fact about action 

mentioned above (e.g. we can only perform one action at a time, choosing the left turn or 

the right but never both at once). 

 

Such appeals to powerful (and often quite abstract) hyperpriors will clearly form an 

essential part of any larger, broadly Bayesian, story about the shape of human experience. 

Despite this, no special story needs to be told about either the very presence or the mode of 

action of such hyperpriors. Instead, they arise quite naturally within bidirectional 

hierarchical models of the kind we have been considering where they may be innate 

(giving them an almost Kantian feel) or acquired in the manner of empirical 

(hierarchical) Bayesxxxvi. Nonetheless, the sheer potency of these highly abstract forms of 

‘systemic expectation’ again raises questions about the eventual spread of explanatory 

weight: this time, between the framework on offer and whatever additional 

considerations and modes of investigation may be required to fix and reveal the contents 

of the hyperpriors themselves.xxxvii 

 

4.2 Illuminating Experience: The Case of Delusions 

 

It might be suggested that merely accommodating the range of human personal-level 

experiences is one thing, while truly illuminating them is another. Such positive impact is, 

however, at least on the horizon. We glimpse the potential in an impressive body of 

recent work conducted within the predictive processing (hierarchical predictive coding) 

framework addressing delusions and hallucination in schizophrenia (Fletcher and Frith 

(2009), Corlett, Frith, and Fletcher (2009)).  
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Recall the unexpected sighting of the elephant described in the previous section. Here, the 

system already commanded an apt model able to ‘explain away’ the particular 

combination of driving inputs, expectations, and precision (weighting on prediction 

error) that specified the doleful grey presence. But such is not always the case. Sometimes, 

dealing with ongoing highly-weighted sensory prediction error may require brand new 

generative models gradually to be formed (just as in normal learning). This might hold 

the key, as Fletcher and Frith (2009) suggest, to a better understanding of the origins of 

hallucinations and delusion (the two so-called ‘positive symptoms’) in schizophrenia. 

These two symptoms are often thought to involve two mechanisms and hence two 

breakdowns, one in ‘perception’ (leading to the hallucinations) and one in ‘belief’ 

(allowing these abnormal perceptions to impact top-level belief). It seems correct (see e.g. 

Coltheart (2007)) to stress that perceptual anomolies alone will not typically lead to the 

strange and exotic belief complexes found in delusional subjects. But must we therefore 

think of the perceptual and doxastic components as effectively independent? 

 

A possible link emerges if perception and belief-formation, as the present story suggests, 

both involve the attempt to match unfolding sensory signals with top-down predictions. 

Importantly, the impact of such attempted matching is precision-mediated in that the 

systemic effects of residual prediction error vary according to the brain’s confidence in 

the signal (2.3 above). With this in mind, Fletcher and Frith (2009) canvass the possible 

consequences of disturbances to a hierarchical Bayesian system such that prediction error 

signals are falsely generated and - more importantly - highly weighted (hence accorded 

undue salience for driving learning).  

 

There are a number of potential mechanisms whose complex interactions, once treated 

within the overarching framework of prediction error minimization, might conspire to 

produce such disturbances. Prominent contenders include the action of slow 

neuromodulators such as dopamine, serotonin, and acetylcholine (Corlett, Frith, and 

Fletcher (2009), Corlett, Taylor et al (2010)). In addition, Friston (2010, p.132) speculates 
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that fast synchronized activity between neural areas may also play a role in increasing the 

gain on prediction error within the synchronized populationsxxxviii. The key idea, however 

implemented, is that understanding the positive symptoms of schizophrenia requires 

understanding disturbances in the generation and weighting of prediction error. The 

suggestion (Fletcher and Frith (2009), Corlett, Frith et al (2009), Corlett, Krystal et al 

(2009)) is that malfunctions within that complex economy (perhaps fundamentally 

rooted in abnormal dopaminergic functioning) yield wave upon wave of persistent and 

highly weighted ‘false errors’ that then propagate all the way up the hierarchy forcing, in 

severe cases (via the ensuing waves of neural plasticity) extremely deep revisions in our 

model of the world. The improbable (telepathy, conspiracy, persecution etc) then 

becomes the least surprising, and - since perception is itself conditioned by the top-down 

flow of prior expectations - the cascade of misinformation reaches back down, allowing 

false perceptions and bizarre beliefs to solidify into a coherent and mutually supportive 

cycle.  

 

Such a process is self-entrenching. As new generative models take hold, their influence 

flows back down so that incoming data is sculpted by the new (but now badly 

misinformed) priors so as to “conform to expectancies” (Fletcher and Frith (2009) p.348). 

False perceptions and bizarre beliefs thus form an epistemically insulated self-confirming 

cyclexxxix. This, then, is the dark side of the seamless story (section 2 above) about 

perception and cognition. The predictive processing model merges - usually productively 

- perception, belief, learning, and affect into a single overarching economy: one within 

which dopamine and other neurotransmitters control the ‘precision’ (the weighting, 

hence the impact on inference and on learning) of prediction error itself. But when things 

go wrong, false inferences spiral and feed back upon themselves. Delusion and 

hallucination then become entrenched, being both co-determined and co-determining.  

 

The same broadly Bayesian framework can be used (Corlett, Frith, et al (2009)) to help 

make sense of the way in which different drugs, when given to healthy volunteers, can 

temporarily mimic various forms of psychosis. Here too the key feature is the ability of 
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the predictive coding framework to account for complex alterations in both learning and 

experience contingent upon the (pharmacologically modifiable) way driving sensory 

signals are meshed, courtesy of precision-weighted prediction errors, with prior 

expectancies and (hence) ongoing prediction. The psychotomimetic effects of ketamine, 

for example, are said to be explicable in terms of a disturbance to the prediction error 

signal (perhaps caused by AMPA upregulation) and the flow of prediction (perhaps via 

NMDA interference). This leads to a persistent prediction error and – crucially - an 

inflated sense of the importance or salience of the associated events, which in turn drives 

the formation of short-lived delusion-like beliefs (see Corlett, Frith, et al (2009) p 6-7): 

also, discussion in Gerrans (2007)). The authors go on to offer accounts of the varying 

psychotomimetic effects of other drugs (such as LSD and other serotonergic 

hallucinogens, cannabis, and dopamine agonists such as amphetamine) as reflecting other 

possible varieties of disturbance within a hierarchical predictive processing frameworkxl. 

 

This fluid spanning of levels constitutes, it seems to me, one of the key attractions of the 

present framework. We here move from considerations of normal and altered states of 

human experience, via computational models (highlighting prediction error based 

processing and the top-down deployment of generative models), to the implementing 

networks of synaptic currents, neural synchronies, and chemical balances in the brain. 

The hope is that by thus offering a new, multi-level, account of the complex, systematic 

interactions between inference, expectation, learning, and experience, these models may 

one day deliver a better understanding even of our own agent-level experience than that 

afforded by the basic framework of ‘folk psychology’. Such an outcome would constitute a 

vindication of the claim (PM Churchland (1989) (In Press)) that adopting a 

‘neurocomputational perspective’ might one day lead us to a deeper understanding of our 

own lived experience. 

 

4.3 Perception, Imagery, and the Senses 
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Another area in which these models are suggestive of deep facts about the nature and 

construction of human experience concerns the character of perception and the relations 

between perception and imagery/visual imagination. Prediction-driven processing 

schemes, operating within hierarchical regimes of the kind described above, learn 

probabilistic generative models in which each neural population targets the activity 

patterns displayed by the neural population below. What is crucial here – what makes 

such models generative as we saw in 1.1 – is that they can be used ‘top-down’ to predict 

activation patterns in the level below. The practical upshot is that such systems, simply as 

part and parcel of learning to perceive, develop the ability to self-generatexli perception-

like states from the top down, by driving the lower populations into the predicted 

patterns. 

 

There thus emerges a rather deep connection between perception and the potential for 

self-generated forms of mental imagery (Kossyln et al  (1995), Reddy et al (2010)). 

Probabilistic generative model-based systems that can learn to visually perceive a cat (say) 

are, ipso facto, systems that can deploy a top-down cascade to bring about many of the 

activity patterns that would ensue in the visual presence of an actual cat. Such systems 

thus display (for more discussion of this issue, see Clark (forthcoming)) a deep duality of 

perception and imaginationxlii. The same duality is highlighted by Grush (2004) in the 

‘emulator theory of representation’, a rich and detailed treatment that shares a number of 

key features with the predictive processing story.xliii  

 

Hierarchical predictive processing also provides a mechanism that explains a variety of 

important phenomena that characterize sensory perception, such as cross- and multi-

modal context effects on early sensory processing. Murrray et al (2002) displayed (as 

noted in 3.1 above) the influence of high-level shape information on the responses of cells 

in early visual area V1. Smith and Muckli (2010) show similar effects (using as input 

partially occluded natural scenes) even on wholly non-stimulated (i.e. not directly 

stimulated via the driving sensory signal) visual areas. Murray et al (2006) showed that 

activation in V1 is influenced by a top-down size illusion, while Muckli et al (2005) and 
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Muckli (2010) report activity relating to an apparent motion illusion in V1. Even 

apparently ‘unimodal’ early responses are influenced (Kriegstein and Giraud (2006)) by 

information derived from other modalities, and hence commonly reflect a variety of 

multimodal associations. Even the expectation that a relevant input will turn out to be in 

one modality (e.g. auditory) rather than another (e.g. visual) turns out to impact 

performance, presumably by enhancing “the weight of bottom-up input for perceptual 

inference on a given sensory channel” (Langner et al (2011) p.10).  

 

This whole avalanche of context effects emerges naturally given the hierarchical 

predictive processing model. If so-called visual, tactile, or auditory sensory cortex is 

actually exploiting a cascade of downward influence from higher levels whose goal is 

actively to predict the unfolding sensory signals (the ones originally transduced using the 

various dedicated receptor banks of vision, sound, touch, etc) extensive downward-

reaching multi-modal and cross-modal effects (including various kinds of ‘filling-in’) will 

follow.  For any statistically valid correlations, registered within the increasingly 

information-integrating (or ‘metamodal’ - Pascual-Leone and Hamilton (2001), Reich et 

al (2011)) areas towards the top of the processing hierarchy, can inform the predictions 

that cascade down, through what were previously thought of as much more unimodal 

areas, all the way to areas closer to the sensory peripheries. Such effects appear 

inconsistent with the idea of V1 as a site for simple, stimulus-driven, bottom-up feature-

detection using cells with fixed (context-inflexible) receptive fields. But they are fully 

accommodated by models that depict V1 activity as constantly negotiated on the basis of 

a flexible combination of top-down predictions and driving sensory signal.  

 

But then why, given this unifying model in which the senses work together to provide 

ongoing ‘feedback’ on top-down predictions that aim to track causal structure in the 

world, do we experience sight as different from sound, touch as different from smell, and 

so on? Why, that is, do we not simply experience the overall best-estimated external states 

of affairs without any sense of the structure of distinct modalities in operation as we do 

so?  
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This is a surprisingly difficult question, and any answer must remain tentative in advance 

of a mature scientific story about conscious experience itself. A place to start, though, is 

by noticing that despite the use of a single general processing strategy (the use of top-

down predictions to attempt to explain away sensory prediction error), there remain 

important differences between what is being ‘explained away’ within the different 

modalities. This is probably best appreciated from the overarching perspective of 

Bayesian perceptual inference. Thus vision, haptics, taste, and audition each trade in 

sensory signals captured by distinct transducers and routed via distinct early processing 

pathways.  The different sensory systems then combine priors and driving signals in ways 

that may yield differing estimates even of the very same distal state. It is true that the 

overall job of the perceptual system is to combine these multiple estimates into a single 

unified model of the distal scene. But different sensory systems specialize (unless one is 

pressed into unusual service, as in the interesting case of sensory substitution 

technologiesxliv) in estimating different environmental features, and even where they 

estimate the same feature, their estimates, and the reliability (in context) of those 

estimates will vary. In a thick fog, for example, vision is unreliable (delivering shape 

information with high uncertainty) while touch is less affected, while when wearing thick 

gloves the reverse may be true. That means that even where two senses are reporting on 

the very same environmental state (e.g. shape by sight, and shape by touch) they may 

deliver different ‘guesses’ about what is out there: guesses that reflect inferences made on 

the basis of distinct priors, different sensory signals, and the differing uncertainties 

associated with those signals.  

 

Such differences, it seems to me, should be enough to ground the obvious experiential 

differences between the various modalities. At the same time, the operation of a common 

underlying processing strategy (Bayesian inference, here implemented using hierarchical 

predictive coding) accounts for the ease with which multiple conflicting estimates are 

usually reconciled into a unified percept. In this way the framework on offer provides a 

powerful set of ‘fundamental cognitive particles’ (generative models and precision-
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weighted prediction-error driven processing) whose varying manifestations may yet 

capture both the variety and the hidden common structure of our mental lives.  

 

Difficult questions also remain concerning the best way to connect an understanding of 

such ‘fundamental particles’ and the gross structure of our daily (and by now massively 

culturally underwritten) conception of our own mental lives. In this daily or ‘folk’ 

conception, we rather firmly distinguish between perceptions, thoughts, emotions, and 

reasons, populating our minds with distinct constructs such as memories, beliefs, hopes, 

fears, and (agent-level) expectations.  We thus depict minds and selves in ways that are 

likely to make at best indirect contact (see e.g. Dennett (1978) (1987), Clark (1989), 

Barrett (2009)) with the emerging scientific vision. Yet bridging between these visions 

(the manifest and the scientific image – Sellars (1962)) remains essential if we are to gain 

maximal benefits from a better understanding of the inner (and outer) machinery itself. It 

is essential if, for example, we aspire to deploy our new understandings to improve social 

relations and education, to increase human happiness, or to inform our responses to 

social problems. To bridge this gap will plausibly require effort and compromise from 

both sides (Humphrey (2000)), as the folk conception alters under the influence of a 

scientific understanding that must itself recognize the causal potency of the daily 

constructs: constructs which we encounter and model just as surely as we encounter and 

model marriage, divorce, and taxes. 

 

 

4.4 Sensing and World 

 

What, then, of the mind-world relation itself? Hohwy (2007) suggests that: 

 

One important and, probably, unfashionable thing that this theory tells us about 

the mind is that perception is indirect…[…]…what we perceive is the brain’s best 

hypothesis, as embodied in a high-level generative model, about the causes in the 

outer world. (Hohwy (2007) p.322) 
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There is something right about this. The bulk of our daily perceptual contact with the 

world, if these models are on the mark, is determined as much by our expectations 

concerning the sensed scene as by the driving signals themselves. Even more strikingly, 

the forward flow of sensory information consists only in the propagation of error signals, 

while richly contentful predictions flow downwards, interacting in complex non-linear 

fashions via the web of reciprocal connections. One result of this pattern of influence is a 

greater efficiency in the use of neural encodings, since: 

 

“an expected event does not need to be explicitly represented or communicated to 

higher cortical areas which have processed all of its relevant features prior to its 

occurrence” (Bubic at al (2010) p. 10) 

 

If this is indeed the case, then the role of perceptual contact with the world is only to 

check and when necessary correct the brain’s best guessing as to what is out there. This is 

a challenging vision, since it suggests that our expectations are in some important sense 

the primary source of all the contents of our perceptions, even though such contents are 

constantly being checked, nuanced, and selected by the prediction error signals 

consequent upon the driving sensory inputxlv. Perhaps surprisingly, the immediate role of 

the impinging world is thus most marked when error signals, in a well-functioning brain, 

drive the kinds of plasticity that results in perceptual learning, rather than in the cases 

where we are simply successfully engaging a well-understood domain. 

 

Nonetheless, we may still reject the bald claim that “what we perceive is the brain’s best 

hypothesis”. For even if our own prediction is indeed (at least in familiar, highly learnt 

contexts) doing much of the heavy lifting, it remains correct to say that what we perceive 

is not some internal representation or hypothesis but (precisely) the world. We do so 

courtesy of the brain’s ability to latch on to how the world is by means of a complex flow 

of sub-personal processes. That flow, if these stories are on track, fully warrants the 

‘Helmholtzian’ description of perception as inference. But it is precisely by such means 
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that biological beings are able to establish a truly tight mind-world linkage. Brains like 

these are statistical sponges structured (1.2 above) by individual learning and 

evolutionary inheritance so as to reflect and register relevant aspects of the causal 

structure of the world itselfxlvi.  

 

One place where this becomes especially evident is in the treatment (2.2 above) of visual 

illusions as Bayes-optimal percepts. The idea, recall, is that the percept - even in the case 

of various effects and illusions - is an accurate estimation of the most likely real-world 

source or property given noisy sensory evidence and the statistical distribution, within 

some relevant sample, of real-world causes. This is an important finding that has now 

been repeated in many domains, including the sound-induced flash illusion (Shams and 

Beierholm (2005)), ventriloquism effects (Alais and Burr (2004)) and the impact of 

figure-ground convexity cues in depth perception (Burge et al (2010)). Additionally, 

Weiss et al’s (2002) Bayes-optimal account of a class of static (fixation-dependent) 

motion illusions has now been extended to account for a much wider set of motion 

illusions generated in the presence of active eye movements during smooth pursuit (see 

Freeman et al (2010), and discussion in Ernst (2010)). Perceptual experience, even in 

these illusory cases, thus looks to be veridically tracking statistical relations between the 

sensory data and its most probable real-world sources. The intervening mechanisms thus 

introduce no worrisome barrier between mind and world. Rather, it is only because of 

such sub-personal complexities that agents like us can be perceptually open to the world 

itself xlvii.  

 

5. Taking Stock 

 

5.1 Comparison with Standard Computationalism 

 

Just how radical is the story we have been asked to consider? Is it best seen as an 

alternative to mainstream computational accounts that posit a cascade of increasingly 

complex feature detection (perhaps with some top-down biasing), or is it merely a 
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supplement to them: one whose main virtue lies in its ability to highlight the crucial role 

of prediction error in driving learning and response? I do not think we are yet in a 

position to answer this question with any authority. But the picture I have painted 

suggests an intermediate verdict, at least with respect to the central issues concerning 

representation and processing. 

 

Concerning representation, the stories on offer are potentially radical in at least two 

respects. First, they suggest that probabilistic generative models underlie both sensory 

classification and motor response. And second, they suggest that the forward flow of 

sensory data is replaced by the forward flow of prediction error. This latter aspect can, 

however, make the models seem even more radical than they actually are. For recall that 

the forward flow of prediction error is here combined with a downward flow of 

predictions, and at every stage of processing the models posit (as we saw in some detail in 

2.1) functionally distinct ‘error units’ and ‘representation units’. The representation units 

that communicate predictions downwards do indeed encode increasingly complex and 

more abstract features (capturing context and regularities at ever-larger spatial and 

temporal scales) in the processing levels furthest removed from the raw sensory input. In 

a very real sense then, much of the standard architecture of increasingly complex feature 

detection is here retained. What differs is the shape of the flow of information, and 

(relatedly) the pivotal role assigned to the computation and propagation of prediction 

error.  

 

A related issue concerns the extent to which the ‘new’ framework reproduces traditional 

insights concerning the specialization of different cortical areas. This is a large question 

whose full resolution remains beyond the scope of the present discussion. But in general, 

the hierarchical form of these models suggests a delicate combination of specialization 

and integration. Different levels learn and deploy different sets of predictions, 

corresponding to different bodies of knowledge, aimed at the level below (specialization) 

but  the system settles in a way largely determined by the overall flow and weighting of 
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prediction error, where this flow is itself varied according to current context and the 

reliability and relevance of different types of information (integration).xlviii 

 

A second source of potential radicalism lies with the suggestion (section 1.5 above) that, 

in extending the models to include action (‘action-oriented predictive processing’) we 

might simultaneously do away with the need to appeal to goals and rewards, replacing 

them with the more austere construct of predictions. In this vein we read that: 

 

“Crucially, active inference does not invoke any ‘desired consequences’. It rests 

only on experience-dependent learning and inference: experience induces prior 

expectations, which guide perceptual inference and action” Friston, Mattout, and 

Kilner (2011) p. 157 

 

In this desert landscape vision, there are neither goals nor reward signals as such. Instead, 

there are only (both learnt and species-specific) expectations, across many spatial and 

temporal scales, which directly enslave both perception and action. Cost functions, in 

other words, are replaced by expectations concerning actions and their sensory (especially 

proprioceptive) consequences. Here, I remain unconvinced. For even if such an austere 

description is indeed possible (and for some critical concerns, see Gershman and Daw (In 

Press)), that would not immediately justify us in claiming that it thereby constitutes the 

better tool for understanding the rich organization of the cognitive economy. To see this, 

we need only reflect that it’s all ‘just’ atoms, molecules and the laws of physics too, but 

that doesn’t mean those provide the best constructs and components for the systemic 

descriptions attempted by cognitive science. The desert landscape theorist thus needs to 

do more, it seems to me, to demonstrate the explanatory advantages of abandoning more 

traditional appeals to value, reward, and cost (or perhaps to show that those appeals make 

unrealistic demands on processing or implementation – see Friston (2011a)) 

 

What may well be right about the desert landscape story, it seems to me, is the suggestion 

that utility (or more generally, personal and hedonic value) is not simply a kind of add-
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on, implemented by what Gershman and Daw (2011) describe as a ‘segregated 

representation of probability and utility in the brain’. Instead, it seems likely that we 

represent the very events over which probabilities become defined in ways that ultimately 

fold in their personal, affective, and hedonic significance. This folding in is probably 

especially marked in frontolimbic cortex (Merker (2004)). But the potent web of 

backward connections ensures that such folding in, once it has occurred, is able (as noted 

by Barrett and Bar (2009) – see also section 2.2 above) to impact processing and 

representation at every lower stage of the complex processing hierarchy. If this proves 

correct, then it is prediction error calculated relative to these affectively rich and 

personal-history-laden expectations that drives learning and response. 

 

Thus construed, an action-oriented predictive processing framework is not so much 

revolutionary as reassuringly integrative. Its greatest value lies in suggesting a set of deep 

unifying principles for understanding multiple aspects of neural function and 

organization. It does this by describing an architecture capable of combining high-level 

knowledge and low-level (sensory) information in ways that systematically deal with 

uncertainty, ambiguity, and noise. In so doing it reveals perception, action, learning, and 

attention as different but complementary means to the reduction of (potentially affect-

laden and goal-reflecting) prediction error in our exchanges with the world. It also, and 

simultaneously, displays human learning as sensitively responsive to the deep statistical 

structures present in both our natural and human-built environments. Thus understood, 

action-oriented predictive processing leaves much unspecified, including (1) the initial 

variety of neural and bodily structures (and perhaps internal representational forms) 

mandated by our unique evolutionary trajectory and (2) the acquired variety of ‘virtual’ 

neural structures and representational forms installed by our massive immersion in 

‘designer environments’ during learning and development. 

 

To fill in these details requires, or so I have argued, a deep (but satisfyingly natural) 

engagement with evolutionary, embodied, and situated approaches. Within that context, 

seeing how perception, action, learning, and attention might all be constructed out of the 
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same base materials (prediction and prediction error minimization) is powerful and 

illuminating. It is there that Friston’s ambitious synthesis is at its most suggestive, and it 

is there that we locate the most substantial empirical commitments of the account. Those 

commitments are to the computation (by dedicated error units or some functionally 

equivalent means) and widespread use by the nervous system of precision-weighted 

prediction error, and its use as proxy for the forward flow of sensory information. The 

more widespread this is, the greater the empirical bite of the story. If it doesn’t occur, or 

occurs only in a few special circumstances, the story fails as a distinctive empirical 

accountxlix.  

 

5.2 Conclusions: Towards A Grand Unified Theory of the Mind? 

 

Action-oriented predictive processing models come tantalizing close to overcoming some 

of the major obstacles blocking previous attempts to ground a unified science of mind, 

brain, and action. They take familiar elements from existing, well-understood, 

computational approaches (such as unsupervised and self-supervised forms of learning 

using recurrent neural network architectures, and the use of probabilistic generative 

models for perception and action) and relate them on the one hand to a priori constraints 

on rational response (the Bayesian dimension) and, on the other hand, to plausible and 

(increasingly) testable accounts of neural implementation. It is this potent positioning 

between the rational, the computational, and the neural that is their most attractive 

feature. In some ways, they provide the germ of an answer to Marr’s dream: a systematic 

approach that addresses the levels of (in the vocabulary of Marr (1982)) the computation, 

the algorithm, and the implementation.  

 

The sheer breadth of application is striking. Essentially the same models here account for 

a variety of superficially disparate effects spanning perception, action, and attention. 

Indeed, one way to think about the primary ‘added value’ of these models is that they 

bring perception, action, and attention into a single unifying framework. They thus 

constitute the perfect explanatory partner, I have argued, for recent approaches that stress 
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the embodied, environmentally embedded, dimensions of mind and reasonl. Perception, 

action, and attention, if these views are correct, are all in the same family business: that of 

reducing sensory prediction error resulting from our exchanges with the environment. 

Once this basic family business is revealed, longer-term environmental structuring (both 

material and socio-cultural) falls neatly into place. We structure our worlds and actions 

so that most of our sensory predictions come true.  

 

But this neatness hides important complexity. For another effect of all that material and 

socio-cultural scaffolding is to induce substantial path-dependence as we confront new 

problems using pre-existing material tools and inherited social structures. The upshot, or 

so I have argued, is that a full account of human cognition cannot hope to ‘jump’ directly 

from the basic organizing principles of action-oriented predictive processing to an 

account of the full (and in some ways idiosyncratic) shape of human thought and reason.  

 

What emerges instead is a kind of natural alliance. The basic organizing principles 

highlighted by action-oriented predictive processing make us superbly sensitive to the 

structure and statistics of the training environment. But our human training 

environments are now so thoroughly artificial, and our explicit forms of reasoning so 

deeply infected by various forms of external symbolic scaffolding, that understanding 

distinctively human cognition demands a multiply hybrid approach. Such an approach 

would combine the deep computational insights coming from probabilistic generative 

approaches (among which figure action-oriented predictive processing) with solid 

neuroscientific conjecture and with a full appreciation of the way our many self-

structured environments alter and transform the problem spaces of human reason. The 

most pressing practical questions thus concern what might be thought of as the 

“distribution of explanatory weight” between the accounts on offer, and approaches that 

explore or uncover these more idiosyncratic or evolutionary path-dependent features of 

the human mind, and the complex transformative effects of the socio-cultural cocoon in 

which it develops.  
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Questions also remain concerning the proper scope of the basic predictive processing 

account itself. Can that account really illuminate reason, imagination, and action-

selection in all its diversity? What do the local approximations to Bayesian reasoning look 

like as we depart further and further from the safe shores of basic perception and motor 

control? What new forms of representation are then required, and how do they behave in 

the context of the hierarchical predictive coding regime? How confident are we of the 

basic Bayesian gloss on our actual processing? (Do we, for example, have a firm enough 

grip on when a system is computing its outputs using a ‘genuine approximation’ to a true 

Bayesian scheme, rather than merely behaving ‘as if’ it did so?).  

 

The challenges (empirical, conceptual, and methodological) are many and profound. But 

the potential payoff is huge. What is on offer is a multi-level account of some of the 

deepest natural principles underlying learning and inference, and one that may be 

capable of bringing perception, action, and attention under a single umbrella. The 

ensuing exchanges between neuroscience, computational theorizing, psychology, 

philosophy, rational decision theory, and embodied cognitive science promise to be 

among the major intellectual events of the early 21st Century. 
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Notes 

 
i This remark is simply described as a ‘scribbled, undated, aphorism’ in the online digital 
archive of the scientist’s journal: see http://www.rossashby.info/index.html 
 
ii I am greatly indebted to an anonymous BBS referee for encouraging me to bring these 
key developments into clearer (both historical and conceptual) focus. 
 
iii The obvious problem was that this generative model itself needed to be learnt: 
something that would in turn be possible if a good recognition model was already in 
place, since that could provide the right targets for learning the generative model.  The 
solution (Hinton et al (1995)) was to use each to gradually bootstrap the other, using the 
so-called ‘wake-sleep algorithm’ - a computationally tractable approximation to 
‘maximum likelihood learning’ as seen in the expectation-maximization (EM) algorithm 
of Dempster et al (1977). Despite this, the Helmholtz Machine remained slow and 
unwieldy when confronted with complex problems requiring multiple layers of 
processing. But it represents an important early version of an unsupervised multi-layer 
learning device or  ‘deep architecture’ (Hinton (2002), Hinton, G. E., & Salakhutdinov, R. 
R. (2006), Hinton et al (2006), Hinton (2007b), Hinton (2010) – for reviews, see Hinton 
(2007a) and Bengio (2009)).  
 
iv This names the probability of an event (here, a worldly cause) given some set of prior 
beliefs and the evidence (here, the current pattern of sensory stimulation). For our 
purposes, it thus names the probability of a worldly (or bodily) cause, conditioned on the 
sensory consequences.  
 
v In speaking of ‘predictive processing’ rather than resting with the more common usage 
‘predictive coding’, I mean to highlight the fact that what distinguishes the target 
approaches is not simply the use of the data compression stategy known as predictive 
coding. Rather, it is the use of that strategy in the special context of hierarchical systems 
deploying probablisitic generative models. Such systems exhibit powerful forms of 
learning and are able flexibly to combine top-down and bottom-up flows of information 
within a multi-layer cascade. 
 
vi Hierarchical models thus induce empirical priors. In what follows the notions of prior, 
empirical prior, and prior belief are used interchangeably, given the assumed context of a 
hierarchical model. 
 
vii Since these proposals involve the deployment of top-down probabilistic generative 
models within a multi-layer architecture, it is the organizational structure of the 
neocortex that most plausibly provides the requisite implementation. This is not to rule 
out related modes of processing using other structures, for example in non-human 
animals, but simply to isolate the ‘best fit’. Nor is it to rule out the possibility that, 
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moment-to-moment, details of the large-scale routing of information flow within the 
brain might depend on gating effects that, although cortically mediated, implicate 
additional structures and areas. For some work on such gating effects among cortical 
structures themselves, see den Ouden et al (2010). 
 
viii I have adopted the neuroanatomist practice of labeling connections simply as 
‘backward’ and ‘forward’ so as to avoid the functional implications of the labels ‘feedback’ 
and ‘feedforward’. This is important in the context of predictive processing models, since 
it is now the forward connections that are really providing (by conveying prediction 
error) feedback on the downwards-flowing predictions - see Friston (2005), Hohwy 
(2007), and discussion in section 2.5 following). Thanks to one of the BBS reviewers for 
this helpful terminological suggestion. 
 
ix Notice that an error signal thus construed is highly informative, and in this respect 
differs from the kinds of error signal familiar from control theory and systems 
engineering. The latter are mostly simple signals that represent the amount of 
error/mismatch. The former (“prediction error signals”) are much richer, and carry 
information not just about the quantity of error but (in effect) about the mismatched 
content itself. It is in this sense that the residual errors are able, as it is sometimes said 
(Feldman and Friston (2010)) to stand in for the forward flow of sensory information 
itself. Prediction errors are as structured and nuanced in their implications as the 
predictions relative to which they are computed. (Thanks to an anonymous BBS referee 
for suggesting this important clarification). 
 
x Hosoya et al here build on earlier work by Srinivasan et al (1982) – see also information-
theoretic treatments of mutual information, such as Linsker (1989). For a larger 
perspective, see Clifford et al (2007) 
 
xi What about more common forms of perceptual alternation, such as those induced by 
ambiguous figures like the Necker cube or the duck-rabbit? In these instances, the gross 
driving sensory input is exactly the same for the two percepts, so switching cannot be 
induced simply by the ongoing influence of the unexplained portions of bottom-up input. 
Instead, such cases are best explained by a similar process involving attentional 
modulations (which may, but need not, be deliberate). Attention (see section 2.3 
following) serves to increase the gain on select error units. By altering the gain on some 
error units and not others, the impact of the driving sensory signal is effectively altered so 
that the best interpretation flips. Attention thus engages the same  (broadly Bayesian) 
mechanism, but via a different (and potentially less automatic) route. This also explains, 
within the present framework, why we have much more control over the alternation rate 
in the case of ambiguous figures (as demonstrated by Meng and Tong (2004)). 
 
xii This is also known (see e.g. Friston, Daunizeau, and Kiebel (2009)) as ‘active inference’. 
I coin ‘action-oriented predictive processing’ as it makes clear that this is an action-
encompassing generalization of the (hierarchical) predictive coding story about 
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perception. It also suggests (rightly) that action becomes conceptually primary in these 
accounts, since it provides the only way (once a good world model is in place and aptly 
activated) to actually alter the sensory signal so as to reduce sensory prediction error – see 
Friston (2009) pp.295. In addition Friston’s most recent work on active inference looks to 
involve a strong commitment (see especially Friston (2011a)) to the wholesale 
replacement of value functions, considered as determinants of action, with expectations 
(‘prior beliefs’, though note that ‘belief’ here is very broadly construed) about action. This 
is an interesting and challenging suggestion that goes beyond claims concerning formal 
equivalence and even beyond the observations concerning deep conceptual relations 
linking action and perception. ‘Action-oriented predictive processing’ as I shall use the 
term, remains deliberately agnostic on this important matter (see also 5.1 following).  
 
xiii I note in passing that this radical view resonates with some influential philosophical 
work concerning high level (reflective) intentions and actions: specifically, Velleman’s 
(1989) account of practical reasoning in which intentions to act are depicted as self-
fulfilling expectations about one’s own actions – see e.g. Velleman (1989) p. 98. 
 
xiv The most fundamental aspect of the appeal to free energy, Friston claims, is that it 
provides an organismically-computable window on surprise [i.e. surprisal] itself, since 
“...surprise cannot be quantified by an agent, whereas free energy can.” (Friston (2010) 
p.55). I read this as meaning, in the present context, that prediction error is 
organismically-computable, since it represents (as we saw in 1.2 above) an internally-
calculable quantity. This, however, is not a feature that I will attempt to explore in the 
present treatment. 
 
xv For an interesting critique of the most ambitious version of the free energy story, see 
Gershman and Daw (In Press) section 5.1.  
 
xvi This kind of efficiency, as one of the BBS referees nicely noted, is something of a 
double-edged sword. For the obvious efficiencies in forward processing are here bought 
at the cost of the multi-level generative machinery itself: machinery whose 
implementation and operation requires a whole set of additional connections to realize 
the downward swoop of the bidirectional hierarchy. The case for predictive processing is 
thus not convincingly made on the basis of ‘communicative frugality’ so much as upon 
the sheer power and scope of the systems that result. 
 
xvii De-Wit (personal correspondence) notes that his usage follows that of e.g. Murray et al 
(2004) and Dumoulin and Hess (2005), both of whom contrast ‘predictive coding’ with 
‘efficient coding’, where the former uses top-down influence to subtract out predicted 
elements of lower-level activity, and the latter uses top-down influence to enhance or 
sharpen it. This can certainly make it look as if the two stories (subtraction and 
sharpening) offer competing accounts of, for example, fMRI data such as Murray et al 
(2002) showing a dampening of response in early visual areas as higher areas settled into 
an interpretation of a shape stimulus. The accounts would be alternatives since the 
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dampening might then reflect either the subtraction of well- predicted parts of the early 
response (‘predictive coding’) or the quashing of the rest of the early signal and the 
attendant sharpening of the consistent elements.  The models I am considering, however, 
accommodate both subtraction and sharpening (see main text for details). This is 
therefore an instance (see 5.1 following) in which more radical elements of the target 
proposals (here, the subtracting away of predicted signal elements) turn out , on closer 
examination, to be consistent with more familiar effects (such as top-down 
enhancement). 
 
xviii The consistency between selective sharpening and the dampening effects of 
‘explaining away’ also makes it harder – though not impossible - to tease apart the 
empirical implications of predictive coding and ‘evidence accumulation’ accounts such as 
Gold and Shadlen (2001) – for a review, see Smith and Ratcliff (2004). For an attempt to 
do so, see Hesselmann et al (2010).  
 
xix In this (2008) treatment Spratling further argues that the forms of hierarchical 
predictive coding account we have been considering are mathematically equivalent to 
some forms of ‘biased competition’ model, but that they nonetheless suggest different 
claims concerning neural implementation. I take no position on these interesting claims 
here. 
 
xx For an early occurrence of this proposal in the literature of cognitive neuroscience, see 
Anderson and Van Essen (1994). That treatment also anticipates (although it does not 
attempt to model) the crucial role of top-down expectations and dynamic forms of 
Bayesian inference. 
 
xxi Thanks to one of the BBS reviewers for suggesting this important nuance to the 
temporal story 
 
xxii This means that we need to be very careful when generalizing from ecologically strange 
laboratory conditions that effectively deprive us of such ongoing context. For some recent 
discussion, see Kveriga et al (2007), Bar (2007), Barrett and Bar (2009), Fabre-Thorpe 
(2011). 
 
xxiii An interesting alternative to the inference-rich Bayesian account is suggested by 
Purves and Lotto (2003) who offer a more direct account in terms of the bare statistics of 
image-source relationships – For a comparison with Bayesian approaches, see Howe, 
Lotto, and Purves (2006). 
 
xxiv I here adapt, merely for brevity of exposition, a similar example from Friston (2002) p. 
237 
 
xxv Technically, there is always a single hierarchical generative model in play.  In speaking 
here of multiple internal models, I mean only to flag that the hierarchical structure 
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supports many levels of processing which distribute the cognitive labor by building 
distinct ‘knowledge structures’ that specialize in dealing with different features and 
properties (so as to predict events and regularities obtaining at differing temporal and 
spatial scales). 
 
xxvi The clear lineage here is with work in connectionism and recurrent artificial neural 
networks (see for example Rumelhart, McClelland et al (1986) and early discussions such 
as Churchland (1989), Clark (1989)). What is most exciting about the new proposals, it 
seems to me, is that they retain many of the insights from this lineage (which goes on to 
embrace work on Helmholz machines and ongoing work on ‘deep architectures’ – see 1.1 
above) while making explicit contact with both Bayesian theorizing and contemporary 
neuroscientific research and conjecture. 
 
xxvii Such effects have long been known in the literature, where they emerged in work on 
sensory habituation, and most prominently in Eugene Sokolov’s pioneering studies of the 
orienting reflex. Sokolov concluded that the nervous system must learn and deploy a 
‘neuronal model’ that is constantly matched to the incoming stimulus, since even a 
reduction in the magnitude of some habituated stimulus could engage ‘dishabituation’ 
and prompt a renewed response. See Sokolov (1960). See also Bindra (1959), Sachs 
(1967), and Pribram (1980). Here and elsewhere I am extremely grateful to one of the 
BBS referees, whose extensive knowledge of the history of these ideas has greatly enriched 
the present treatment. 
 
xxviii For an excellent discussion of this recent work, see de-Wit, Machilsen, and Putzeys 
(2010) 
 
xxix Lee de-Wit (personal communication) raises the intriguing possibility that the 
distinction between encoding error and encoding representational content might be 
realized in alternate dynamics of the very same neuronal substrate, with early responses 
encoding error and later ones settling into a representation of something like ‘agreed 
content’. In a related vein, Engel et al (2001) discuss the potential role of neural 
synchrony as a means of implementing top-down influence on early processing. 
 
 
xxx These terms, according to a memoir by Wendy Lehnert (2007), were introduced by 
Bob Abelson as part of a keynote address to the 3rd Annual Meeting of the Cognitive 
Science Society in 1981. 
 
xxxi The hierarchical predictive coding family of models that (along with their extensions 
to action) form the main focus of the present treatment are not, in my view, happily 
assimilated to either of these camps. They clearly share Bayesian foundations with the 
‘pure’ structured probabilistic approaches highlighted by Griffiths et al, but their 
computational roots lie (as we saw in 1.1) in work on machine learning using artificial 
neural networks. Importantly, however, hierarchical predictive processing models now 
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bring ‘bottom-up’ insights from cognitive neuroscience into increasingly productive 
contact with those powerful computational mechanisms of learning and inference, in a 
unifying framework able (as Griffiths et al correctly stress) to accommodate a very wide 
variety of surface representational forms. Moreover, such approaches are computationally 
tractable since local (prediction error minimizing) routines are being used to 
approximate Bayesian inference. For some excellent antidotes to the appearance of deep 
and irreconcilable conflict hereabouts, see Feldman (2010), Lee (2010). 
 
xxxii We glimpse the power of the complex internal statistical relationships  enshrined in 
human languages  in Landauer and colleagues ((Landauer et al (1998), Landauer and 
Dumais (1997)) fascinating work on ‘latent semantic analysis’. This work reveals the vast 
amount of information now embodied in statistical (but deep, not first order) relations 
between words and the larger contexts (sentences and texts) in which they occur. The 
symbolic world we humans now immerse ourselves in is demonstrably chock-full full of 
information about meaning-relations in itself, even before we (or our brains) attempt to 
hook any of it to practical actions and the sensory world.  
 
xxxiii E.g. Stanislas Dehaene’s (2009) ‘neural re-cycling’ account of the complex interplay 
between neural precursors, cultural developments, and neural effects within the key 
cognitive domains of reading and writing. 
 
xxxiv Such hyperpriors could, for example, be ‘built-in’ by  ‘winner-takes-all’ forms of 
lateral (within layer) cortical inhibition - see Hohwy et al (2008) p.691. 
 
xxxv As helpfully pointed out by one of the BBS referees. 
 
xxxvi The introduction of hyperpriors into these accounts is just a convenient way of 
gesturing at the increasing levels of abstraction at which prior expectations may be 
pitched. Some expectations, for example, may concern the reliability or shape of the space 
of expectations itself.  In that sense, hyperpriors, although they can sound quite exotic, 
are in no way ad hoc additions to the account. Rather, they are just priors in good 
standing (but maintaining the distinction makes it a bit easier to express and compute 
some things). Like all priors, they then impact system dynamics in various ways, 
according to their specific contents.  
 
xxxvii This worry (concerning the appeal to hyperpriors) was first drawn to my attention by 
Mark Sprevak (personal communication).  
 
xxxviii A much better understanding of such multiple interacting mechanisms (various slow 
neuromodulators perhaps acting in complex concert with neural synchronization) is now 
needed, along with a thorough examination of the various ways and levels at which the 
flow of prediction and the modulating effects of the weighting of prediction error 
(precision) may be manifest (for some early forays, see Corlett, Taylor, et al (2010) – see 
also Friston and Kiebel (2009)). Understanding more about the ways and levels at which 
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the flow and impact of prediction error may be manipulated is vitally important if we are 
to achieve a better understanding of the multiple ways in which ‘attention’ (here 
understood – see 2.3 above - as various ways of modifying the gain on prediction error) 
may operate so as to bias processing by flexibly controlling the balance between top-down 
and bottom-up influence. 
 
xxxix There are probably milder versions of this everywhere, both in science (Maher (1988))  
and everyday life. We tend to see what we expect, and we use that to confirm the model 
that is both generating our expectations and sculpting and filtering our observations.  
 
xl Intriguingly, the authors are also able to apply the model to one non-pharmacological 
intervention: sensory deprivation. 
 
xli This need not imply an ability deliberately to engage in such a process of self-
generation. Such rich, deliberate forms of imagining may well require additional 
resources, such as the language-driven forms of cognitive ‘self-stimulation’ described in 
Dennett (1991) chapter 8. 
 
xlii It is perhaps worth remarking that, deep duality notwithstanding, nothing in the 
present view requires that the system, when engaged in imagery-based processing, will 
typically support the very same kinds of stability and richness of experienced detail that 
daily sensory engagements offer. In the absence of the driving sensory signal, no stable 
ongoing information about low-level perceptual details is there to constrain the 
processing. As a result, there is no obvious pressure to maintain or perhaps even to 
generate (see Reddy et al (2010)) a stable hypothesis at the lower levels: there is simply 
whatever task-determined downwards pressure the active higher-level encoding exerts. 
 
xliii Common features include the appeal to forward models and the provision of 
mechanisms (such as Kalman filtering – see Grush (2004), Friston (2002), Rao and 
Ballard (1999)) for estimating uncertainty and (thus) flexibly balancing the influence of 
prior expectations and driving sensory inputs. Indeed, Grush (op cit p. 393) cites the 
seminal predictive coding work by Rao and Ballard (1999) as an account of visual 
processing compatible with the broader emulator framework. In addition, Grush’s 
account of perception as ‘environmental emulation’ (Grush (2004) section 5.2) looks 
highly congruent with the depiction (Friston (2003) and elsewhere) of perception as 
reconstructing the hidden causes structuring the sensory signal. Where the accounts seem 
to differ is in the emphasis placed on prediction error as (essentially) a replacement for 
the sensory signal itself, the prominance of a strong Bayesian interpretation (using the 
resources of ‘empirical Bayes’ applied across a hierarchy of processing stages), and the 
attempted replacement of motor commands by top-down proprioceptive predictions 
alone (for a nice treatment of this rather challenging speculation, see Friston (2011a)). It 
would be interesting (although beyond the scope of the present treatment) to attempt a 
more detailed comparison. 
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xliv An account of such transformed uses might be possible within the action-oriented 
predictive coding framework. The key to such an account would, I conjecture, be to 
consider the potential of the substituting technologies to deliver patterns of sensory 
stimulation that turn out to be best predicted by the use of the very same intermediate-
level generative models that characterize the substituted modality. See also Prinz (2005). 
 
xlv Thanks to Susanna Siegel for useful discussion of this point. 
 
xlvi For some further discussion, see Friston (2005) p.822.  
 
xlvii This way of describing things was suggested by my colleague Matt Nudds (personal 
communication). 
  
xlviii For the general story about combining specialization and integration, see Friston 
(2002) and discussion in Hohwy (2007). For a more recent account, including some 
experimental evidence concerning the possible role of prediction error in modulating 
inter-area coupling, see den Ouden et al (2010). 
 
xlix The empirical bet is thus, as Egner et al recently put it, that “the encoding of 
predictions (based on internal forward models) and prediction errors may be a 
ubiquitous feature of cognition in the brain…rather than a curiosity of reward 
learning…or motor planning” (Egner et al (2010 p. 16607)). 
 
l When brought under the even-more-encompassing umbrella of the ‘free energy 
principle’ (1.6 above), the combined ambition is formidable. If these accounts were 
indeed to mesh in the way Friston (2010) suggests, that would reveal the very deepest of 
links between life and mind, confirming and extending the perspective known as  
‘enactivist’ cognitive science – see e.g. Varela, Thompson, and Rosch (1991), Thompson 
(2007), Di Paolo (2009)). 
 


