
To be published in Behavioral and Brain Sciences (in press) 

Cambridge University Press 2007 
 

 

Below is the unedited précis of a book that is being accorded BBS multiple book review. This preprint has 

been prepared for potential commentators who wish to nominate themselves for formal commentary 

invitation. Please do not write a commentary unless you receive a formal invitation. Invited commentators 

will receive full instructions.  Commentary must be based on the book - not the précis 

 
 

Précis of: Semantic Cognition: A Parallel Distributed Processing Approach 
 

Published by MIT Press, 2004 (cloth), and 2006 (soft cover). 
 

Timothy T. Rogers 

University of Wisconsin-Madison 

ttrogers@wisc.edu 

http://concepts.psych.wisc.edu 

James L. McClelland 

Stanford University 

jlm@psych.stanford.edu 

 

Contents of Book 

Preface 

1. Categories, Hierarchies, and Theories 

2. A PDP Theory of Semantic Cognition 

3. Latent Hierarchies in Distributed Representations  

4. Emergence of Category Structure in Infancy 

5. Naming Things: Privileged Categories, Familiarity, Typicality, and Expertise 

6. Category Coherence 

7. Inductive Projection and Conceptual Reorganization 

8. The Role of Causal Knowledge in Semantic Task Performance 

9. Core Principles, General Issues, and Future Directions 

Appendix A: Simulation Details 

Appendix B: Training Patterns 

Appendix C: Individuating Specific Items in the Input 

Notes 

References 

Index 

 
Abstract: In our recent book, we present a parallel distributed processing theory of the acquisition, 

representation and use of human semantic knowledge. The theory proposes that semantic abilities arise 

from the flow of activation amongst simple, neuron-like processing units, as governed by the strengths of 

interconnecting weights; and that acquisition of new semantic information involves the gradual adjustment 

of weights in the system in response to experience. These simple ideas explain a wide range of empirical 

phenomena from studies of categorization, lexical acquisition, and disordered semantic cognition. In this 

précis we focus on phenomena central to the reaction against similarity-based theories that arose in the 

1980's and that subsequently motivated the "theory-theory" approach to semantic knowledge. Specifically, 

we consider i) how concepts differentiate in early development, ii) why some groupings of items seem to 

form "good" or coherent categories while others do not, iii) why different properties seem central or 

important to different concepts, iv) why children and adults sometimes attest to beliefs that seem to 

contradict their direct experience, v) how concepts reorganize between the ages of 4 and 10, and vi) the 

relationship between causal knowledge and semantic knowledge. The explanations for these phenomena 

are illustrated with reference to a simple feed-forward connectionist model; and the relationship between 

this simple model, the broader theory, and more general issues in cognitive science are discussed. 

 

Keywords: Categorization, causal knowledge, concepts, connectionism, development, innateness, learning, 

semantics, memory, theory-theory.  

 

 



 
 
 
 
Introduction 

 

When we open our eyes and look around us we observe a host of objects—people, 

animals, plants, cars, buildings, and other artifacts of many different kinds—most of 

which are quite familiar. We have tacit expectations about the unseen properties of these 

objects—for example, what we would find underneath the skin of an orange or banana—

and how the objects would react or what effects they would have if we interacted with 

them in various ways. Would a furry animal bite if we tried to stroke it? Would a 

particular artifact hold a hot liquid? We can usually name these objects, describe their 

visible and invisible properties to others, and make inferences about them, such as 

whether they would likely die if deprived of oxygen, or whether they would break if 

dropped onto a concrete floor. Understanding the basis of these abilities—to recognize, 

comprehend, and make inferences about objects and events in the world, and to 

comprehend and produce statements about them—is the goal of research in semantic 

cognition. Since antiquity, philosophers have considered how we make semantic 

judgments, and the investigation of semantic processing was a focal point for both 

experimental and computational investigations in the early phases of the cognitive 

revolution. Yet the mechanistic basis of semantic cognition remains very much open to 

question. 

In the 1960's and early 70's, the predominating view held that semantic 

knowledge was encoded in a vast set of stored propositions, and theories of the day 

offered explicit proposals about the organization of such propositions in memory, and 

about the nature of the processes employed to retrieve particular propositions from 

memory (e.g. Collins & Quillian, 1969; Collins & Loftus, 1975). The mid-70's, however, 

saw the introduction of findings on the gradedness of category membership and on the 

privileged status of some categories that such "spreading activation" theories did not 

encompass (Rosch and Mervis, 1975; Rosch et al., 1976; Rips, Shoben, & Smith, 1973). 

These findings subsequently gave rise to a family of "similarity-based" approaches 

proposing that semantic information is encoded in feature-based representations—

category prototypes or representations of individual instances—and that retrieval of 

semantic information depends in some way upon the similarity between a probe item and 

these stored representations (E. E. Smith & Medin, 1981). Like spreading-activation 

theories, similarity-based approaches advanced specific hypotheses about the nature of 

the stored representations and of the mechanisms by which semantic information is 

retrieved (e.g. Hampton, 1993; R. Nosofsky, 1984; R. M. Nosofsky, 1986; Kruschke, 

1992); but these in turn have been subject to serious and challenging criticism arising 

from a new theoretical framework often called the "theory-theory" (Carey, 1985; Murphy 

& Medin, 1985; Gopnik & Meltzoff, 1997; Keil, 1989). 

The theory-theory proposes that semantic knowledge is rooted in a system of 

implicit beliefs about the causal forces that give rise to the observable properties of 

objects and events. On this view, implicit and informal causal theories determine which 

sets of items should be treated as similar for purposes of induction and generalization; 

which properties are important for determining category membership; which properties 



will be easy to learn and which difficult; and so on. Conceptual development is viewed as 

arising (at least in part) from change to the implicit causal theories that structure 

concepts. This framework has been very useful as a springboard for powerful 

experimental demonstrations of the subtlety and sophistication of the semantic judgments 

adults and even children can make, and for highlighting the serious challenges faced by 

similarity-based and spreading-activation theories. In contrast to those frameworks, 

however, the theory-theory has not provided an explicit mechanistic account of the 

representation and use of semantic knowledge. The fundamental tenets of the theory 

theory are general principles whose main use has been to guide the design of ingenious 

experiments rather than the formulation of explicit proposals about the nature and 

structure of semantic representations or the mechanisms that process semantic 

information. 

In what follows we provide a précis of our recent book Semantic Cognition, 

which puts forward a theory about the cognitive mechanisms that support semantic 

abilities based on the domain general principles of the connectionist or parallel 

distributed processing framework. Our approach captures many of the appealing aspects 

of spreading-activation and similarity-based theories while resolving some of the 

apparent paradoxes they face; and it addresses many of the phenomena that have 

motivated theory-theory and related approaches within an alternative, more mechanistic, 

framework. The book illustrates how a simple model instantiating the theory addresses, 

among other things, classic findings from studies of semantic cognition in infancy and 

childhood; the influence of frequency, typicality, and expertise on semantic cognition in 

adulthood; basic-level effects in children and adults; and the progressive disintegration of 

conceptual knowledge observed in some forms of dementia. In this précis, however, we 

focus on phenomena that were central to the critical reaction against similarity-based 

theories and that subsequently motivated the appeal to theory-based approaches. These 

phenomena are briefly summarized in Table 1, and are explained in further detail below. 

We emphasize these particular phenomena because they are often thought to challenge 

the notion that semantic abilities might arise from general-purpose learning mechanisms, 

and to support the view that such abilities must arise from initial domain-specific 

knowledge, via domain-specific learning systems.  

These issues are central to questions about what makes us uniquely human. Do we 

possess, at birth, and by virtue of evolution, a set of highly specialized cognitive modules 

tailored to support knowledge about particular domains? Or do our advanced semantic 

abilities reflect the operation of a powerful learning mechanism capable of acquiring, 

through experience, knowledge about all semantic domains alike? A key point of our 

book is that the learning mechanisms adopted within the connectionist approach to 

cognition are quite different from classical associationist learning; that the capabilities of 

connectionist models have been under-appreciated in this respect; and that such models 

can provide an intuitive explanation of how domain-general learning supports the 

emergence of semantic and conceptual knowledge over the course of development. The 

models we describe employ domain-general learning mechanisms, without initial 

knowledge or domain-specific constraints. Thus, if they adequately capture the 

phenomena listed in Table 1, this calls into question the necessity of invoking initial 

domain-specific knowledge to explain semantic cognition. 



The particular models we will use throughout our discussion are variants of a 

model described by Rumelhart (Rumelhart, 1990; Rumelhart & Todd, 1993), which in 

turn built on previous proposals by Hinton (1981, 1986). We will therefore begin with a 

description of Rumelhart's model and how it works, followed by brief explanation of the 

more general theory the model is intended to exemplify. In the section entitled 

"Accounting for the phenomena," we will consider how the theory explains the 

phenomena listed in Table 1, using simulations with variants of the Rumelhart model to 

illustrate the substantive points. With a more complete understanding of the implications 

of the theory before us, we then consider how our theory relates to the theory-theory 

("The PDP theory and the theory-theory"); in the section entitled "Principles of the PDP 

approach to semantic cognition" we summarize more general aspects of the current work 

that we believe to be particularly critical to understanding semantic abilities; and in 

"Broader issues" we discuss implications of the present work for cognitive science more 

generally.  

The material below is largely excerpted from our book, with some restructuring, 

condensation and minor corrections. In the interest of providing a relatively succinct 

overview of the theory, we have omitted substantial detail, both in the range of 

phenomena to which the model has been applied and in the descriptions of the 

simulations themselves. Where we feel these details may prove especially useful, we 

refer the reader to the corresponding section of the book. We have avoided adding new 

material addressing work completed since the book appeared; where relevant such 

material will arise in open peer commentary. 

 

1 The PDP Framework 
 

As previously mentioned, the models we will use to illustrate the theory are variants of an 

architecture first proposed by Rumelhart (Rumelhart, 1990; Rumelhart & Todd, 1993) 

and shown in Figure 1. Rumelhart was interested to understand how the propositional 

information stored in a Quillian-like hierarchical model like that shown in Figure 2 could 

be acquired and processed by a connectionist network employing distributed internal 

representations. Thus, the individual nodes in the Rumelhart network's input and output 

layers correspond to the constituents of propositions—the items that occupy the first 

(subject) slot in each proposition, relation terms that occupy the second slot, and the 

attribute values that occupy the third slot. Each item is represented by an individual input 

unit in the layer labeled Item, each relation is represented by the individual units in the 

layer labeled Relation, and the various possible completions of three-element 

propositions are represented by individual units in the layer labeled Attribute. When 

presented with a particular Item and Relation pair in the input, the network's job is to turn 

on the attribute units in the output that correspond to valid completions of the 

proposition. For example, when the units corresponding to canary and can are activated 

in the input, the network must learn to activate the output units move, grow, fly and sing. 

The particular items, relations, and attributes used by Rumelhart and Todd (1993) were 

taken directly from the hierarchical propositional model described by Collins and 

Quillian (1969, see Figure 2), so that, when the network has learned to correctly complete 

all of the propositions, it has encoded the same information stored in that propositional 

hierarchy. 



The network consists of a series of nonlinear processing units, organized into 

layers, and connected in a feed-forward manner as shown in the illustration. Patterns are 

presented by activating one unit in each of the Item and Relation layers, and allowing 

activation to spread forward through the network, modulated by the connection weights. 

To update a unit's activation, its net input is first calculated by summing the activation of 

each unit from which it receives a connection multiplied by the value of the connection 

weight; this is then transformed to an activation according to the logistic transfer 

function. 

To find an appropriate set of weights, the network is trained with backpropagation 

(Rumelhart, Hinton, & Williams, 1986). First, an item and relation are presented to the 

network, and activation is propagated forward to the output units. The observed output 

states are then compared to the desired or target values, and the difference is converted to 

a measure of error. The partial derivative of the error with respect to each weight in the 

network is computed in a backward pass, and the weights are adjusted by a small amount 

to reduce the discrepancy. Because the model's inputs are localist, all items in its 

environment are equally distinct from one another in the input—the robin and canary, for 

instance, are no more similar to one another than either is to the rose. Each individual 

Item unit projects, however, to all of the units in the layer labeled Representation. The 

activation of a single item in the model's input, then, generates a distributed pattern of 

activity across these units. The weights connecting Item and Representation units evolve 

during learning, so the pattern of activity generated across the Representation units for a 

given item is a learned internal representation of the item. 

 

 

 



 
 

 
Figure 1. A connectionist model of semantic memory adapted from Rumelhart and Todd (1993), 

used to learn all the propositions true of the specific concepts (pine, oak, etc) in the Collins and 

Quillian model (Figure 2). Input units are shown on the left, and activation propagates from the 

left to the right. Where connections are indicated, every unit in the pool on the left is connected to 

every unit in the pool to the right. Each unit in the Item layer corresponds to an individual item in 

the environment. Each unit in the Relation layer represents contextual constraints on the kind of 

information to be retrieved. Thus, the input pair canary can corresponds to a situation in which 

the network is shown a picture of a canary, and asked what it can do. The network is trained to 

turn on all those units that represent correct completions of the input query. In the example 

shown, the correct units to activate are grow, move, fly and sing. All simulations discussed were 

conducted with variants of this model. 

 

 



 

 
 

 
Figure 2. A taxonomic hierarchy of the type used by Collins and Quillian (1969) in their model of 

the organization of knowledge in memory. The schematic indicates that living things can grow; 

that a plant is a living thing; that a tree is a plant; and that an oak is a tree. It therefore follows that 

an oak can grow. The training corpus for the Rumelhart model incorporates all propositions 

pertaining to the 8 subordinate items that can be derived from this tree. 

 

 

Though the model's inputs and outputs are constrained to locally represent 

particular items, attributes, and relations, the learning process allows it to derive 

distributed internal representations that do not have this localist character. In contrast to 

some other connectionist theories, the units that encode learned internal representations in 

the model have no explicit content in themselves—they do not correspond to semantic 

features, propositions, images, or other explicit representations. Thus it is impossible to 

determine what the network "knows" solely by inspecting the activation of these internal 

units. Instead, the network's knowledge must be probed by querying it with an 

appropriate input, and inspecting the response it generates in the output. Although the 

learned internal representations have no directly-interpretable content, they do subserve a 

critical function: for reasons elaborated below, they turn out to capture the semantic 

similarity relations that exist among the items in the network's training environment, and 

so provide a basis for semantic generalization, just as did the assigned similarity relations 

in Hinton's (1981) network. Obviously the model's behavior in this respect depends on 

the particular state of its weight matrix when tested. Since this weight matrix changes 



with experience, the model's generalization behavior strongly depends on the extent and 

nature of its prior experience with the items in its environment. 

Although Rumelhart conceived of this network as encoding and processing 

propositional content, we view the model as a very simple implementation of a more 

general theoretical approach to semantic cognition (also exemplified in other related 

work; see McClelland & Rumelhart, 1986; Rumelhart et al., 1986; McClelland, 

McNaughton, & O'Reilly, 1995; McClelland, St. John, & Taraban, 1989). Under this 

approach, the main function of the semantic system is to support performance on tasks 

that require one to generate, from perceptual or linguistic input, properties of objects and 

events that are not directly apparent in the environment. The representations that support 

semantic task performance consist of patterns of activity across a set of units in a 

connectionist network, with semantically related objects represented by similar patterns 

of activity. In a given semantic task, these representations may be constrained both by 

incoming information about the item of interest (in the form of a verbal description, a 

visual image, or other sensory information) and by the context in which the item is 

encountered. Thus we envision that the two parts of the input in the model—the Item and 

Context units—represent a perceived object (perhaps foregrounded for some reason to be 

in the focus of attention) and a context provided by other information available together 

with the perceived object. Different item/context inputs provoke different patterns of 

activation across internal representation units; and the instantiation of any particular 

pattern of activation propagates forward to allow the system to generate an output 

specifying the relevant object properties, which are encoded in the model's outputs.  

For instance, perhaps the situation is analogous to one in which a young child is 

looking at a robin on a branch of a tree, and, sees that, as a cat approaches, the robin 

suddenly flies away. The object and the situation together provide a context in which it 

would be possible for an experienced observer to anticipate that the robin will fly away; 

and the observation that it does would provide input allowing a less experienced observer 

to develop such an anticipation. Conceptually speaking, this is how we see learning 

occurring in preverbal conceptual development: an object encountered in a particular 

situation gives rise to implicit predictions which are subsequently met or violated. 

(Initially the predictions may be very general or even null, and are inherently graded). 

The discrepancy between expected and observed outcomes then serves as the basis for 

adjusting the connection weights that support prediction—thus allowing experience to 

drive change in both the internal representations of objects and events, and predictions 

about observable outcomes. In the Rumelhart model, the presentation of the "object" 

corresponds to the activation of one of the Item input units; the situation in which the 

item is encountered corresponds to the activation of one of the Context units; the child's 

expectations about the outcome of the event may be equated with the model's outputs; 

and the presentation of the actual observed outcome is analogous to the presentation of 

the target for the output units in the network. On this view, the environment provides 

both the input that characterizes a situation as well as the information about the outcome 

that then drives the process of learning. This outcome information will consist sometimes 

of verbal, sometimes of non-verbal information, and in general is construed as 

information filtered through perceptual systems, no different in any essential way from 

the information that drives the Item and Context units in the network.  



We can also see that there is a natural analog in the model for the distinction 

drawn between the perceptual information available from an item in a given situation, 

and the conceptual representations that are derived from this information. Specifically, 

the model's input, context, and targets code the "perceptual" information that is available 

from the environment in a given episode; and the intermediating units in the 

Representation and Hidden layers correspond to the "conceptual" representations that 

allow the semantic system to accurately perform semantic tasks.  

In what follows we will show how these simple ideas account for a surprisingly 

broad variety of phenomena in the study of semantic cognition, paying particular 

attention to the six phenomena listed in Table 1. Accounting for the phenomena will 

allow us to illustrate certain interesting properties of the model, which in turn will allow 

us to articulate the general theory more completely. 

 

2 Accounting for the Phenomena 
 
2.1 Progressive Differentiation of Concept Representations 

 

Although infants from a very young age are sensitive to perceptual similarities amongst 

objects in their world (e.g. Eimas & Quinn, 1994; Mareschal, 2000), there is now 

considerable evidence that knowledge about semantic similarity relations is acquired 

somewhat later and follows a predictable developmental trajectory (e.g. Mandler, Bauer, 

& McDonough, 1991; Mandler & McDonough, 1996, 1993). Specifically, children 

appear to acquire broader semantic distinctions earlier than more fine-grained 

distinctions. For example, when perceptual similarity amongst items is controlled, infants 

differentiate animals from furniture around 7-9 months of age, but do not make finer-

grained distinctions (e.g. between fish and birds or chairs and tables) until somewhat later 

(Mandler et al., 1991; Pauen, 2002a). A similar pattern of coarse-to-fine conceptual 

differentiation can be observed over the elementary school years in assessments of 

knowledge about which predicates can appropriately apply to which nouns (Keil, 1979). 

 The contention that children acquire broad semantic distinctions before narrower 

ones seemingly contradicts an alternative long-standing view that children acquire "basic-

level" concepts like dog or car prior to more general (e.g. animal, vehicle) or specific 

(labrador, limosine) concepts (e.g. Mervis, 1987). The main support for this view stems 

from two sources. First, preferential-looking studies have shown that infants as young as 

3 months of age are capable of "categorizing" at the basic-level. For instance, habituation 

to photographs of cats will generalize to novel pictures of cats, but not to photographs of 

horses, suggesting that the infants treat the different cats as similar to one another and as 

different from the horses (Eimas & Quinn, 1994). Such results are only observed, 

however, when perceptual similarity is high within category and low between category 

(e.g. Quinn & Johnson, 2000). Thus they may not reflect the infant's pre-existing 

semantic knowledge about cats and horses, but may instead indicate an ability to rapidly 

extract information about perceptual similarity over the course of the experiment (as 

indeed very young infants have been shown to do in random-dot category learning 

studies, see Bomba & Siqueland, 1983). In contrast, recent studies by Pauen (2002a, 

2002b) suggest that, when perceptual similarity is closely controlled, preverbal infants in 

object-manipulation tasks differentiate more general semantic categories prior to basic-

level categories. 



Second, studies of lexical acquisition have shown that, for fairly familiar items, 

children learn basic-level labels (e.g. "dog") prior to more general ("animal") and more 

specific ("labrador") labels (Mervis, 1987; Brown, 1958). On our reading of the literature 

these findings are robust, but they reflect constraints on word learning that arise 

sometime after children have begun to differentiate concepts at both general and basic 

levels. That is, the general-before-basic pattern documented in the work of Mandler et al. 

(1991) and Pauen (2002a) occurs between 7 and 9 months of age, before children have 

begun to name things; and the basic-before-general pattern observed during word 

learning arises because, by the time children are learning to name, they are already 

representing items from different basic-level categories as quite distinct from one 

another, even if they are from the same general semantic domain. 

In Chapter 5 of the book we show that the basic-before-general trend in naming 

can coexist in the model with general-before-basic differentiation of the underlying 

conceptual representations. We also provide a detailed treatment of basic-level effects in 

lexical acquisition and in adulthood and consider how and why such effects change with 

expertise and in some forms of dementia. In this précis, we focus on understanding the 

coarse-to-fine differentiation of concepts that occurs in preverbal infants when perceptual 

similarity is controlled, because a full understanding of the mechanisms that produce the 

phenomenon in the model will provide the basis for our explanation of all of the 

remaining phenomena. 

We trained the network shown in Figure 1 with the same corpus of propositions 

used by Rumelhart and Todd (1993). The corpus contains all of the propositions true of 

each of the eight specific concepts (pine, oak, etc.) shown in the propositional hierarchy 

displayed at the top of the figure. To see how the network's internal representations 

change over time, we stopped training at different points during learning and then stepped 

through the eight items, recording the states of the representation units for each. The top 

part of Figure 3 shows these activations at three points during learning. Initially, and even 

after 50 epochs of training as shown, the patterns representing the items are all very 

similar, with activations hovering around 0.5. At epoch 100, the patterns corresponding to 

various animal instances are similar to one another, but are distinct from the plants. At 

epoch 150, items from the same intermediate cluster, such as rose and daisy, have similar 

but distinguishable patterns, and are now easily differentiated from their nearest 

neighbors (e.g. pine and oak). Thus, each item has a unique representation, but semantic 

relations are preserved in the similarity structure across representations. 

The arrangement and grouping of the representations shown in the bottom of 

Figure 3 reflects the similarity structure among the internal representations, as determined 

by a hierarchical clustering analysis. At 50 epochs the tree is very flat and any similarity 

structure revealed in the plot is weak and random. By epoch 100 the clustering analysis 

reveals that the network has differentiated plants from animals: all the plants are grouped 

under one node, while all the animals are grouped under another. At this point, more fine-

grained structure is not yet clear. For example, oak is grouped with rose, indicating that 

these representations are more similar to one another than is oak to pine. By epoch 150, it 

is apparent that the hierarchical relations among the concepts is fully captured in the 

similarities among the learned distributed representations. 

 

 



 
 

 

Figure 3. Learned internal representations of eight items at three points during learning, using the 

network shown in Figure 1. In the top plots, the height of each vertical bar indicates the degree of 

activation for one of the eight units in the network's Representation layer, in response to the 

activation of a single Item unit in the model's input. In the bottom plots, the same data were 

subjected to a hierarchical cluster analysis that recursively links a pattern or a previously-linked 

group of patterns to another pattern or previously-formed group. The process begins with the pair 

that is most similar (according to a Euclidean distance metric), whose elements are then replaced 

by the mean of the two items. These steps are repeated until all items have been joined in a single 

superordinate group. The plots show that, early in learning (50 Epochs), the pattern of activation 

across these units is similar for all eight objects. After 100 epochs of training, the plants are still 

similar to one another, but are distinct from the animals. By 150 epochs, further differentiation 

into trees and flowers is evident. 

 

 



To better visualize the process of conceptual differentiation that takes place in this 

model, we performed a multidimensional scaling of the internal representations for all 

items at 10 different points during training. The solution is plotted in Figure 4. The lines 

trace the trajectory of each item's representation throughout learning in the 2-dimensional 

compression of the representation state space. The labeled end points of the lines indicate 

the final learned internal representations after 1500 epochs of training. The figure shows 

that the items, which initially are bunched together in the middle of the space, soon 

divide into two global clusters based on animacy (plant/animal). Next, the global 

categories split into smaller intermediate clusters, and finally the individual items are 

pulled apart. In short, the network's representations appear to differentiate in relatively 

discrete stages, completing differentiation of the most general level before progressing to 

successively more fine-grained levels. Like children, the model seems to distinguish 

fairly broad semantic distinctions prior to more specific ones. What accounts for this 

stagelike progressive differentiation? 

 

 
 
Figure 4. Trajectory of learned internal representations during learning. The Euclidean distance 

matrix for all item representations was calculated at ten different points throughout training. A 

multidimensional scaling was performed on these data to find corresponding points in a two 

dimensional space that preserve, as closely as possible, the pairwise distances among 

representations across training. Thus, the proximity of two points in the figure approximates the 

actual Euclidean distance between the network's internal representations of the corresponding 

objects at a particular point in training. The lines indicate the path traversed by a particular item 

representation over the course of development. 

 

 



 

To understand this, first consider how the network learns about the following four 

objects: the oak, the pine, the daisy, and the salmon. Early in learning, when the weights 

are small and random, all of these inputs produce a similar pattern of activity throughout 

the network. Since oaks and pines share many output properties, their similar patterns 

produce similar error signals for the two items, causing the weights leaving the oak and 

pine units to move in similar directions. Because the salmon shares few properties with 

the oak and pine, the same initial pattern of output activations produces a different error 

signal, and the weights leaving the salmon input unit move in a different direction. What 

about the daisy? It shares more properties with the oak and the pine than it does with the 

salmon or any of the other animals, and so its weights tend to move in a similar direction 

as the other plants. Similarly, the rose tends to be pushed in the same direction as all of 

the other plants, and the other animals tend to be pushed in the same direction as the 

salmon. As a consequence, on the next pass, the pattern of activity across the 

representation units will remain similar for all the plants, but will tend to differ between 

the plants and the animals.  

This explanation captures part of what is going on but does not fully explain why 

there is such a strong tendency to learn the superordinate structure first. Why is it that so 

little intermediate level information is acquired until after the superordinate level 

information? Put another way, why don't the points in similarity space for different items 

move in straight lines toward their final locations? Several factors appear to be at work, 

but one is key: 

 

Properties that covary coherently across items tend to move connections 

coherently in the same direction, while idiosyncratic variation of properties tends 

to move weights in opposing directions that cancel each other out. 

 

To see this, consider the fact that the animals all share some properties (e.g., they 

all can move, they all have skin, they are all called animals). Early in training, all the 

animals have essentially the same representation. Consequently, any weight change 

forward from the representation units that are made when processing an individual animal 

(say, the canary) will produce a similar effect on all of the other animals. For properties 

shared by animals, this generalization speeds learning: when taught that the canary can 

move, the network will tend to correctly generalize the property to all animals. Thus for 

shared properties, learning accumulates across individual animals, benefiting knowledge 

for all animals. For properties that differentiate individual animals, on the other hand, this 

generalization is detrimental to learning: weight changes that help the network learn, for 

instance, that the canary is yellow or can sing will tend to generalize to other animals. In 

this case the generalization is usually incorrect, so these weight changes will be reversed 

by the learning that results when other individual animals are processed. Thus learning of 

individuating properties will not tend to accumulate across different examples. The 

consequence is that properties shared by items with similar representations will be 

learned faster than the properties that differentiate such items. 

The preceding paragraph considers how the structure of internal representations 

affects learning in the weights projecting forward from the Representation layer. What 

about the weights projecting from the Item input to the Representation layer, which after 



all determine the similarity structure of the internal representations in the first place? 

We've seen that items with similar outputs will have their representations pushed in the 

same direction, while items with dissimilar outputs will have their representations pushed 

in different directions. The question remaining is why the dissimilarity between, say, the 

fish and the birds does not push the representations apart very much from the very 

beginning. The key to this question lies in understanding that the magnitude of the 

changes made to the representation weights depends on the extent to which such changes 

will reduce error at the output. This in turn depends on the configuration of the weights 

projecting forward from the Representation layer. If, given a particular configutation of 

forward weights, changes to the activation of Representation units will not strongly 

influence the total error at the output level, then the weights projecting into the 

Representation layer will not change. In other words, we can point out a further very 

important aspect of the way the model learns: 

Error back-propagates much more strongly through weights that are already 

structured to perform useful forward-mappings. 

 

 
 
Figure 5. Bottom: Mean Euclidean distance between plants and animals, birds and fish, and 

canary and robin internal representations throughout training. Middle: Average magnitude of the 

error signal propagating back from properties that reliably discriminate plants from animals, birds 

from fish, or the canary from the robin, at different points throughout training when the model is 

presented with the canary as input. Top: Activation of a property shared by animals (can move), 

birds can fly or unique to the canary (can sing), when the model is presented with the input 

canary can at different points throughout training. 

 

 



We can illustrate this by observing the error signal propagated back to the 

representation units for the canary item, from three different kinds of output units: those 

that reliably discriminate plants from animals (such as can move and has roots), those 

that reliably discriminate birds from fish (such as can fly and has gills), and those that 

differentiate the canary from the robin (such as is red and can sing). In Figure 5, we show 

the mean error reaching the Representation layer throughout training, across each of 

these types of output unit when the model is given the canary (middle plot). We graph 

this alongside measures of the distance between the two bird representations, between the 

birds and the fish, and between the animals and the plants (bottom plot); and also 

alongside of measures of activation of the output units for sing, fly and move (top plot). 

We can see that there comes a point at which the network is beginning to differentiate the 

plants and the animals, and is beginning to activate move correctly for all of the animals. 

At this time the average error information from output properties like can move is 

producing a much stronger signal than the average error information from properties like 

can fly or can sing. As a consequence, the information that the canary can move is 

contributing much more strongly to changing the representation weights than is the 

information that the canary can fly and sing. Put differently, the knowledge that the 

canary can move is more "important" for determining how it should be represented than 

the information that it can fly and sing, at this stage of learning. 

The overall situation can be summarized as follows. Initially the network assigns 

virtually the same representation to all of the items. With just this one representation, the 

network cannot predict different outputs for different concepts. The only properties that 

are correctly activated are those that are shared across everything—the is living, can 

grow, and isa living thing outputs. All other output properties have their effects on the 

forward weights almost completely cancelled out. However, because the plants have 

several properties that none of the animals have and vice-versa, weak error signals from 

each of these properties begin to accumulate, eventually driving the representations of 

plants and animals apart. At this point, the common animal representation can begin to 

drive the activation of outputs shared by animals, and vice versa for the plants. This 

structure in the forward weights in turn allows the properties shared by animals and not 

plants (and vice versa) to more strongly influence the model's internal representations, 

relative to properties that differentiate, say, birds from fish. The result is that the 

individual animal representations stay similar to one another, and are rapidly propelled 

away from the individual plant representations. Very gradually, however, the weak 

signals back-propagated from properties that reliably discriminate birds from fish begin 

to accumulate, and cause the representations of these sub-groups to differentiate slightly, 

thereby providing a basis for exploiting this coherent covariation in the forward weights. 

This process continues through successive waves of differentiation all the way down to 

the subordinate level, so that idiosyncratic properties of individual items are eventually 

mastered by the net.  

In short, there is a kind of symbiosis of the weights into and out of the 

representation units, such that both sets are sensitive to successive waves of higher-order 

or coherent covariation among output properties. Each wave begins and peaks at a 

different time, with the peaks occurring at times that depend on the strengths of the 

corresponding patterns of variation. The timing of different waves of differentiation, and 

the particular groupings of internal representations that result, are governed by high-order 



patterns of property covariation (corresponding to the eigenvectors of the property 

covariance matrix, see Rogers & McClelland, 2004, pp. 96-104). Stronger patterns will 

drive differentiation earlier than weaker patterns; and the properties that differentiate very 

broad categories tend to exhibit stronger patterns of coherent covariation than those that 

differentiate more specific categories. 

 
2.2 Category Coherence 

 

"Coherence" is a term introduced by Murphy and Medin (1985) to capture the 

observation that, of the many ways of grouping individual items in the environment 

together, some groupings seem more natural, intuitive, and useful for the purposes of 

inference than others. For example, objects that share feathers, wings, hollow bones, and 

the ability to fly seem to "hang together" in a natural grouping—it seems appropriate to 

refer to items in this set with a single name ("bird"), and to use the grouping as a basis for 

knowledge generalization. By contrast, other groupings of objects are less intuitive, and 

less useful for purposes of inductive inference. For example, the set of objects that are 

blue prior to the year 2010 and green afterward constitutes a perfectly well-defined class, 

but it doesn't seem to be a particularly useful, natural, or intuitive grouping. The second 

issue we consider is: how does the semantic system "know" which groupings should 

support productive generalization, and which should not? 

The common-sense answer to this question is that the semantic system construes 

as similar groupings of items that have many properties in common. Murphy and Medin 

(1985) argued, however, that similarity alone is too underconstrained to provide a 

solution to this problem. They emphasized two general difficulties with the notion that 

category coherence can be explained solely on the basis of the learned similarities among 

groups of items. First, the extent to which any two objects are construed as similar to one 

another depends upon how their properties are weighted: a zebra and a barber pole may 

be construed as very similar to one another if the property has stripes is given sufficient 

weight. In order for a similarity-based account of category coherence to carry any 

authority, it must explain how some attributes of objects come to be construed as 

important for the object's representation, while others do not. Moreover, as R. Gelman 

and Williams (1998) have pointed out, the challenge is not simply to derive a set of 

feature weightings appropriate to all objects, because the importance of a given attribute 

can vary from item to item. This observation leads to an apparent circularity under some 

perspectives: a given object cannot be categorized until an appropriate set of feature 

weights has been determined, but such a set cannot be recovered until the item has been 

categorized.  

R. Gelman and Williams (1998), Murphy and Medin (1985), Keil (1989) and 

others (Wellman & Gelman, 1997; Gopnik & Wellman, 1994; Gopnik & Meltzoff, 1997) 

have suggested that the challenge of selecting and weighting features appropriately might 

be resolved with reference to naive theories about the causal relationships among object 

properties. That is, certain constellations of properties "hang together" in psychologically 

natural ways, and are construed as "important" to an object's representation, when they 

are related to one another in a causal theory. For example, wings, feathers, and hollow 

bones may be particularly important for representing birds, because they are causally 

related to one another in a person's naive theory of flight. On this view, causal domain 

theories constrain the range of an item's attributes that are relevant to the task. 



The second argument against correlation-based learning accounts of coherence 

stems from the observation that knowledge about object-property correspondences is not 

acquired with equal facility for all properties. For example, Keil (1991), initially 

paraphrasing Boyd (1986), writes:  

 

...although most properties in the world may be ultimately connectable 

through an elaborate causal chain to almost all others, these causal links are not 

distributed in equal density among all properties. On the contrary, they tend to cluster 

in tight bundles separated by relatively empty spaces. What makes them cluster is a 

homeostatic mechanism wherein the presence of each of several features tends to 

support the presence of several others in the same cluster and not so much in other 

clusters. Thus, the properties tend to mutually support each other in a highly 

interactive manner. To return to an example used previously, feathers, wings, flight, 

and light weight don't just co-occur; they all tend to mutually support the presence of 

each other, and, by doing so, segregate the set of things known as birds into a natural 

kind. 

Boyd's claim is about natural kinds and what they are, not about psychology. 

At the psychological level, however, we may be especially sensitive to picking up 

many of these sorts of homeostatic causal clusters such that beliefs about those causal 

relations provide an especially powerful cognitive "glue," making features cohere and 

be easier to remember and induce later on.  

 

The progressive differentiation process just illustrated suggests some answers to 

the important questions raised by Murphy and Medin (1985) and others. To make these 

answers explicit, we considered how a variant of the Rumelhart model would learn about 

items described by is, can and has properties (as before), with some properties co-

occurring together in coherent clusters and others distributed independently. The specific 

patterns are shown in Figure 6. Each of the items (numbered 1-16 in the Figure) was 

assigned six properties, and each attribute appeared as a target for four items. Hence, all 

properties were equally frequent in the model's training environment, and all items had an 

equivalent number of properties. As the Figure indicates, however, half of the properties 

are coherent in that they co-occur together in the same 4 objects, whereas others are 

incoherent, in that they vary independently of one another across items.  

This structure provides an analog in the model to the coherent clusters of 

properties described by Keil (1991) in the quotation above. In the real world, such 

clusters may arise from "homeostatic causal mechanisms" as Keil suggests; for the 

model, however, such homeostatic causal mechanisms are not directly accessible. What is 

accessible instead is the coherent covariation of properties across items and contexts 

produced by such mechanisms. We have assigned arbitrary labels to the items and the 

properties to avoid any sense that the actual properties are intended to be realistic, and to 

focus attention on the issue at hand, which is that of coherent covariation vs. idiosyncratic 

distribution.  

 

 

 



 
 
 

Figure 6. Training patterns for the model (excluding names) in the simulation of category 

coherence. Individual item patterns are labeled 1-16, and the different properties are labeled with 

letters. Properties on the left (labeled with upper-case letters) are "coherent," in that they always 

occur together. Properties on the right (labeled with lower-case letters) are not coherent, because 

they do not co-occur reliably with one another. Every instance has three coherent and three 

incoherent properties, and every property appears as a target for four items. 

 

 

The top part of Figure 7 shows a hierarchical clustering of the model's internal 

representations at three points during learning. Since all properties occur in exactly 4 

items, any individual property taken in isolation could, in theory, provide some basis for 

"grouping" a set of four items together in the model's internal representations—for 

example, considering just the is-d property, the model might have reason to "group 

together" items 3, 6, 10, and 13. From the Figure, however, it is clear that the model 

discovers representations that are organized primarily by the coherent properties. The 

network represents as similar those items that have coherent properties in common (such 

as items 1-4); and represents other groups of four that happen to share an incoherent 

property (such as is-d) as different from one another. The reason is exactly that explored 

in the previous section: because the items that share property A also happen to share 

properties B and C, the error signals generated by all of these properties push the 

representations of all of these concepts coherently in the same direction. Attributes that 

vary coherently together will exert a greater degree of constraint on the model's internal 

representations.  

As a consequence, such properties will also be easier for the network to acquire. 

The bottom part of Figure 7, we plot the activation of each item's six attributes (when 

queried with the appropriate relation) throughout training, averaged across 5 different 

training runs. Coherent properties are shown as solid lines, and incoherent properties are 

shown as dashed lines. The model learns very quickly to strongly activate the coherent 

properties for all 16 items, but takes much longer to activate each item's incoherent 

properties. Because all units were active as targets equally often, and all items appeared 

in the training environment with equal frequency, this difference is not attributable to the 

simple frequency with which items or properties appear in the environment. The network 



is sensitive to the coherent structure of the environment apparent in the way that 

attributes are distributed across items—it shows an advantage for learning and activating 

an item's "coherent" attributes. That is, the model is especially sensitive to the sorts of 

"homeostatic causal clusters" to which Keil (1991) suggests humans may also be 

especially sensitive. 

 

 

 
 
Figure 7. Top: Hierarchical cluster analysis of the model's internal representations at three points 

during learning. Each item is represented with its corresponding number as shown in Figure 6. 

Although every property in the training corpus is shared by some grouping of four items, the 

model organizes its internal representations with respect to shared "coherent" properties. Bottom: 

Activation of the correct output units for all 16 items when the network is queried with the 

corresponding item and context. Coherent properties are shown as solid lines, and incoherent 

properties are shown as dashed lines. The network quickly learns to activate the all of the 

coherent properties for all of the items, but takes much longer to learn the incoherent properties. 

Both plots show data averaged over 5 separate training runs. 

 



 

 
2.3 Illusory Correlations 
 

Children and adults can sometimes be shown to attest to beliefs that directly contradict 

their own experience. For instance, when shown a photograph of an echidna—a furry-

looking animal with eyes but no discernable feet—children may assert that the animal 

can move "because it has feet," even though, when asked, they agree that there are no feet 

to be seen in the photograph. Or conversely, when shown a stone statue of a humanoid 

being, they may attest that it cannot move "because it doesn't have any feet," even when 

the statue's "feet" are clearly visible (Massey & Gelman, 1988).  

Such illusory correlations are important because they appear to indicate some 

organizing force behind children's inferences that goes beyond "mere" associative 

learning. That is, such phenomena appear to indicate a commitment to beliefs that 

contradict direct perceptual experience—and so, whatever mechanism supports the belief, 

it must be built upon something other than learning from direct perceptual experience. 

Perhaps the child holds an implicit theory of biological motion under which "having feet" 

is precisely the quality that causes the ability to move under one's own power. Such a 

theory might then be used to infer that any new animal, because it can move, must have 

feet, even if you can't see them; and that any new artifact, because it cannot move, must 

not have feet, appearances to the contrary. Under this view, a child's implicit theoretical 

commitments leads her to ignore or discount object-property correspondences not suited 

to the theory, or to enhance or even invent such correspondences, even when they are not 

present in actual experience. Illusory correlations are thus sometimes taken as evidence 

for the role of implicit causal theories in conceptual knowledge (Murphy & Medin, 1985; 

Keil, 1989). 

Our simulations offer a different explanation: perhaps illusory correlations arise 

as a by-product of sensitivity to coherent covariation. That is, perhaps children strongly 

infer that the echidna must have feet, appearances to the contrary, because they observe 

that it has fur and eyes, and these properties strongly tend to co-occur with feet in other 

animals. To illustrate how this could be, we trained the model with a variant of the 

original Rumelhart corpus, which we extended to include 4 items in each of the previous 

categories (flowers, trees, birds and fish) as well as a set of 5 four-legged animals (a dog, 

cat, mouse, goat and pig). The specific patterns (see Rogers & McClelland, 2004, 

Appendix B) were not intended to accurately capture all of the actual properties of the 

corresponding items; we employed this extended corpus simply because the original 

training set was a bit too simple to address all of the phenomena of interest. The extended 

corpus adheres to the similarity structure from the original corpus: items from the same 

intermediate category (e.g. fish, flower) tend to have many properties in common; items 

from the same broad domain (plant or animal) tend to have more properties in common 

with one another than with items from the contrasting domain. But the slightly larger 

training set allows us to examine what happens with individual items that diverge slightly 

from a pattern of coherent covariation among members of a given category. 

We investigated the model's responses to two queries throughout learning. First, 

we considered its activation of the property has leaves in response to the item pine. Has 

leaves is a property that covaries coherently with other properties of plants; it is not, 

however, true of the pine. Second, we investigated it's activation of the property can sing 



when queried with the item canary. The canary is the only bird (and indeed, the only 

animal) that can sing in this corpus, so can sing represents a relatively idiosyncratic 

property. Figure 8 shows the activation of the has leaves unit and the can sing unit when 

the network is probed with the inputs pine has and canary can, respectively, at different 

points throughout training. At Epoch 1500, the network has been trained repeatedly to 

turn off the has leaves unit when presented with pine has as input. Nevertheless, it 

strongly activates the has leaves unit in response to this input. Like the children in R. 

Gelman's study, the network attributes to the object a property that, on the basis of the its 

experience, it clearly doesn't have. Similarly, by Epoch 1500 the network has repeatedly 

been "told" that the canary can sing. Despite this, it shows no tendency to activate the 

output can sing when asked what a canary can do. That is, the network appears to create 

an illusory correlation between the pine and the property has leaves that does not exist in 

its environment, and to ignore the strong correlation that does exist between the canary 

and the property can sing.  

 

 
 

 

Figure 8. The activation of the has leaves and can sing output units across the first 5000 epochs 

of training, when the network is probed with the inputs pine has and canary can, respectively. At 

epoch 1500, the network has been trained 150 times to turn off the has leaves unit in response to 

the input pine has; and to turn on the unit can sing in response to the input canary can. Despite 

this, the network still activates the has leaves unit for the pine tree, and fails to activate the can 

sing unit for the canary. 

 

 

 



 

 

The simulation thus demonstrates that "illusory correlations" can arise from a 

domain-general correlational learning mechanism that is sensitive to coherent covariation 

amongst object properties—the higher order patterns of covariation may overwhelm 

learning of weaker pairwise object-property correspondences that violate the higher-order 

regularities.  

 
2.4 Domain-Specific Attribute Weighting 

 

For many theorists (Carey, 1985; Murphy & Medin, 1985; Keil, 1991; R. Gelman & 

Williams, 1998), a key motivation for the claim that concepts are rooted in naive domain 

theories stems from the observation that children at fairly young ages can use quite 

different kinds of information to govern induction for items from different conceptual 

domains. In one of many experiments demonstrating such effects, Macario (1991) 

presented children with novel objects varying along two dimensions (color and shape). 

When the children were led to believe the objects were a kind of food, they most often 

generalized a new fact about the items on the basis of shared color; but when led to 

believe they were a kind of toy, they more often generalized on the basis of shared shape. 

Thus, the children appeared to weight color more heavily than shape for food items, but 

shape more heavily than color for toys (see also L. B. Smith, 2000; Jones, Smith, & 

Landau, 1991). Such phenomena appear to indicate a paradox: to "categorize" an object, 

one must know which of its properties are important; but one cannot know which 

properties are important until one knows what kind of thing it is. 

We have seen that sensitivity to coherent covariation leads the model to weight 

some properties more strongly than others. Can the same processes explain patterns of 

domain- or category-specific attribute weighting? To answer this question, we conducted 

a simulation designed to capture the pattern of data observed in Macario's experiment. To 

the training patterns employed in the previous simulation, we added four new properties: 

is bright, is dull, is big, and is small. We assigned these properties to the familiar objects 

in the network's environment (the plants and animals) in such a way that size, but not 

brightness, was important for discriminating between the trees and flowers; and 

brightness, but not size, was important for discriminating between the birds and fish. 

Thus, all the trees were big and all the flowers were small, but a given tree or flower 

could be either bright or dull; whereas all the birds were bright and all the fish were dull, 

though a given bird or fish could be either big or small. (Of course, these are not exactly 

valid generalizations about the size and brightness of animals and plants in the world, but 

allow us to illustrate how the network learns about attribute "importance".) Does the 

learning process described above come to selectively weight size more than brightness 

for plants, and brightness more than size for animals?  

We trained the model for 3,000 epochs, on all items and relations, at which point 

it had learned to correctly activate all output properties except for specific names and 

idiosyncratic properties above a threshold of 0.7. We then used a technique called 

backpropagation-to-activation to investigate how the model would represent various 

novel objects varying in their size, brightness, and other observable qualities represented 

by output units. In a recurrent model that included projections back from output 

properties to Representation units, such an item could be represented just by activating its 



observed properties and allowing this information to feed back to the Representation 

units. Backpropagation-to-activation allows us to accomplish a similar effect in a feed-

forward model—for instance, we can investigate how the model would represent a novel 

item given just the information that it "is a bird", or given more detailed information, for 

instance that it "is large," "is bright," and "has roots." Details regarding the technique are 

given on pp. 63-66 of the book. 

We assigned brightness and size attributes to four "novel" test items as shown in 

Table 2. In the first simulation run, we also assigned to these items an attribute shared by 

the plants (has roots); in the second, we assigned to them an attribute shared by animals 

(has skin). In both runs, we used backpropagation-to-activation to derive an internal 

representation for each item, by backpropagating from the output units corresponding to 

bright, dull, big, small, roots, and skin. We then examined the similarities among the four 

test item representations in each case.  

 

 

 
 

 

 
Figure 9. Hierarchical cluster analysis of the model's representations of test objects varying in 

brightness and size, and sharing a property common either to all animals or to all plants. When 

the objects share a property common to the plants (has roots), the network groups them on the 

basis of their size, which is important for discriminating flowers from trees. However, when the 

objects share a property common to animals (has skin), the network groups them on the basis of 

their brightness, which is important for discriminating birds from fish in the network. Thus, the 

network has learned that brightness is "important" for animals, but not for plants. 

 

 

Figure 9 shows the results of a hierarchical cluster analysis on the network's 

internal representations of the four test objects, when they share a property common to 

plants (left-hand figure) or animals (right-hand figure). When the network is "told" that 

the objects all have roots like the plants, it groups them on the basis of their size; when 

"told" that they all have skin like the animals, it groups them on the basis of their 

brightness. That is, the network seems to "know" that brightness is more important than 

size for representing animals, but that the reverse is true for plants. Like the children in 



Macario's (1991) experiment, it represents different similarities among a group of items, 

and consequently will generalize from one to another differently, depending upon the 

superordinate category to which the items belong.  

To understand why this happens, consider how the network comes to represent an 

object that is bright and big, compared to one that is bright and small. When the objects 

both share a property with the plants, such as has roots, the network must assign to them 

representations that lie somewhere within the space spanned by the predicate has roots. 

Within this region, the only objects that are big are the trees, which exhibit coherent co-

variation of several other properties; whereas the only objects that are small are the 

flowers, which have their own set of coherent properties, different from those of the trees. 

Thus the bright-big test object will receive a representation similar to the trees, whereas 

the bright-small objects will receive a representation similar to the flowers. The property 

is bright does not vary coherently with other properties within the plant domain, and as a 

consequence, exerts little influence on representations among the plants. 

The opposite consequence is observed when the same test objects share a property 

with animals. In this case, they must receive representations that fall within the region of 

semantic space spanned by the predicate has skin. Within this subspace, all the fish are 

dull, and all the birds are bright. In order to activate the property is bright, both objects 

must be represented as similar to the birds. The property is big does not vary coherently 

with other properties in this domain. Thus, both big and small objects fall within the same 

small region of semantic space (i.e. proximal to the other birds), and hence are 

represented as similar to one another. In other words, there is no chicken-and-egg 

problem—sensitivity to patterns of high-order covariation among stimulus attributes is 

sufficient to explain category-specific attribute weighting.  

 
2.5 Induction and Conceptual Change 

 

An important source of information on the development of conceptual knowledge comes 

from studies of inductive projection, where children at different ages are asked to answer 

questions about the properties of novel and familiar objects. In some cases, they may be 

taught a new fact about an item (e.g. "this dinosaur has warm blood"), and then asked 

whether the fact is true about other kinds of objects (e.g. "Do you think this other kind of 

dinosaur also has warm blood?"). In other cases, they may simply be asked about 

properties of presumably unfamiliar things (e.g., previously unfamiliar animals), or about 

properties of things that may be somewhat familiar but where it is unlikely they have 

learned directly about the property in question (e.g. "Do you think a worm has a heart?"). 

In a series of influential experiments, Carey (1985) showed that children's answers to 

such questions change in systematic ways over development. Since generalization and 

induction are key functions of the semantic system, these patterns provide an important 

source of information about developmental change in the structure of semantic 

representations. 

For Carey, such changing induction profiles allow the theorist to diagnose a 

developing child's causal theories. In her view, a concept like living thing is rooted in an 

emergent theory of biology, which is constituted in part of knowledge about the causal 

mechanisms that give rise to the shared properties of living things. All living things 

breathe, eat, reproduce, grow, and die; on Carey's view ten-year-olds (and adults) realize 

that all of these properties are consequences of the same underlying causal (biological) 



mechanisms. By contrast, she suggests, four-year-olds conceive of these biological facts 

as arising from the same social and psychological mechanisms that also give rise to other 

various aspects of human behavior: Something might grow because it "gets the idea" 

from other things that grow, for example. The later-developing conception of animals and 

plants as both belonging to the same conceptual domain depends upon the acquisition of 

a theory of biological causation. Thus conceptual reorganization—change over time in 

the way that concepts are organized—reflects, for Carey, change to causal theories. And 

yet, although conceptual reorganization is so central to Carey's work, she has relatively 

little to say about the mechanisms that lead to change—indeed, there remains for her and 

others a complete mystery about how theory change is even possible (Carey & Spelke, 

1994; Fodor, 2000). 

 Here we consider some of Carey's findings on inductive projection in developing 

children between the ages of 4 and 10, and present simulations indicating how analogs of 

these patterns may be seen in the behavior of the Rumelhart model as it gradually learns 

from experience. We will not attempt to simulate the specific patterns of inductive 

projection seen by Carey and others; rather our focus will be on showing that the 

different types of changes that she points to as indicative of underlying theory change can 

be seen in the changing patterns of inductive projection, and in the underlying 

representations, within the model. These kinds of changes, and the experimental evidence 

supporting them, can be briefly enumerated as follows: (1) Patterns of inductive 

projection change over development; (2) they can differ for different kinds of properties; 

(3) such patterns tend to become more specific to the particular type of property over the 

course of development; and (4) patterns of inductive projection can coalesce as well as 

differentiate.  

To understand how these patterns of reorganization might arise within the model, 

consider that the particular properties the model must activate in response to a given item 

depends upon the context in which the item is encountered. In the Rumelhart model, there 

are four different contexts, which require the model to generate an item's names (isa), 

behaviors (can), parts (has), or other visual properties such as color (is). We have 

stressed up to now how knowledge of a concept evolves across the Representation units 

in the model. In this layer, a given item is always represented with the same pattern, 

regardless of the context in which the model is queried. The Rumelhart model does, 

however, provide for context-dependent representations on the Hidden layer, where 

information from the relational context units comes together with the context-

independent representation on the Representation units. It is to these representations that 

our attention will now turn. 

When a new property is associated with a representation in the Hidden layer, the 

likelihood that it will also be activated by a different item will depend both on the input 

from the Representation and from the Relation layers. Because different relational 

contexts emphasize different similarity relations, the model will come to generalize 

different kinds of features in different ways; and these patterns will themselves change 

over development, as the model gains increasing experience with each of the different 

contexts. (The range of contexts provided in the model is highly restricted, but should be 

sufficient to illustrate how context sensitivity can be achieved in the model). To explore 

how these factors influence the model's inductive projection behavior, we investigated its 

tendency to project different kinds of newly-learned nonsense properties from one item to 



others, at two different points during training with the same corpus used in the previous 

section.  

Specifically, we added a new output unit to the Attribute layer to represent a new 

nonsense property called queem. No occurrences of the novel property queem occurred 

during this overall training, which we take as providing the background developmental 

experience onto which a test of inductive projection can be introduced. To assess 

inductive projection in the model, we stopped training after 500 or 2500 epochs of 

training with the corpus, and taught the network a new fact about the maple tree: either 

that the maple can queem, that the maple has queem, or that the maple is queem. We 

adjusted only the weights received by the new nonsense property from the Hidden layer, 

so that acquisition of the new fact was tied to the network's representation of the maple in 

the given relational context. (In the book we discuss how the same effect could be 

achieve by fast hippocampal learning of the type proposed by McClelland et al., 1995.) In 

each case, when the network had learned the new property, we queried it with the other 

items in its environment to determine how it would extend the new property queem. 

 

 
 

Figure 10. Barplot showing that activation of the nonsense property queem when the network is 

queried with various inputs, after it has learned that the maple can queem, has a queem, or is 

queem. If the network learns the new property after 500 epochs of training, the property 

generalizes across the entire superordinate category, regardless of the relation context. However, 

when the network is taught the novel property after 2500 epochs of training, it shows different 

patterns of generalization, depending on whether queem is understood to be a behavior, a part, or 

a physical attribute. 

 



 

The results are shown in Figure 10. Early in learning, the network generalizes the 

novel property from the maple to all of the plants, regardless of whether it is a can, has, 

or is property; there are slight differences in its handling of the is property compared to 

the others, in that it tends also to generalize to some degree to the animals as well. By 

Epoch 2500, however, the model has learned a much stronger differentiation of the 

different contexts; the can property continues to generalize to all the plants while the has 

property now generalizes only to the other trees. The is property also generalizes 

predominantly to the other plants, but not so evenly, and it generalizes to some extent to 

other things (with which the maple happens to share some superficial attributes). Thus, 

when the network has learned that the "maple is queem," it shows some tendency to 

generalize the novel property to items outside the superordinate category; it shows no 

such tendency when it has been taught that "queem" is a behavior (i.e. can property) or a 

part (i.e. has property).  

The model behaves as if it "knows" that different kinds of properties extend 

across different sets of objects; and, just as in Carey's studies, this knowledge undergoes 

a developmental progression, such that the model only gradually sorts out that different 

kinds of properties should be extended in different ways. The reason is that, just as the 

network's internal representations of objects in the Representation layer adapt to the 

structure of the environment, so too do its context-sensitive representations over the 

Hidden layer. That is, the weights leading from the Representation and Relation layers 

into the Hidden layer adjust slowly, to capture the different aspects of similarity that exist 

between the objects in different contexts. Items that share many can properties generate 

similar patterns of activity across units in the Hidden layer when the can relation unit is 

activated. The same items, however, may generate quite different patterns across these 

units when one of the other Relation units is active in the input. 

In Figure 11, we show a multidimensional scaling of the patterns of activity 

generated across the Hidden units, for the same 16 items in 2 different relation contexts, 

after the model has finished learning. (We excluded the mammal representations from 

this figure for clarity. They are distributed somewhere in between the birds and fish in all 

three plots.) The plot in the middle shows the learned similarities between item 

representations in the Representation layer. The top plot shows the similarities across 

Hidden units for the same items in the is context, whereas the bottom plot shows these 

similarities in the can context. In the can context, all the plants receive very similar 

representations, because they all have exactly the same set of behaviors in the training 

environment—the only thing a plant can do, as far as the model knows, is grow. As a 

consequence, the model generalizes new can properties from the maple to all of the 

plants. By contrast, in the is context, there are few properties shared among objects of the 

same kind. Thus, the network is pressured to differentiate items in this context, and as a 

result it shows less of a tendency to generalize newly learned is properties. The other 

relation contexts not shown in the figure (has, and isa) also remap the similarity relations 

among the items in the model's environment, in ways that reflect the degree to which the 

items share properties in the relevant context. 

 

 



 
 
Figure 11. Multidimensional scaling showing the similarities represented by the model for objects 

in different relation contexts. The middle plot shows the similarities among object representations 

in the Representation layer. The top graph shows the similarities among the same objects in the 

Hidden layer, when the is relation unit is activated. The bottom graph shows the similarities 

across these same units when the can relation unit is activated. The is relation context exaggerates 

differences among related objects; for example, relative to the similarities in the Representation 

layer, the trees are fairly well spread out in the is context. Moreover, similarities in object 

appearances are preserved in these representations; for example, the canary is as close to the 

flowers as to the other birds in the is context, by virtue of being pretty. By contrast, the can 

context collapses differences among the plants, because in the network's world, all plants can do 

only one thing: grow. 

 

 

 



 

 

 

These changing induction profiles all involve learning to treat items differently in 

different situations or contexts, which is clearly an important part of the developmental 

progression charted in Carey's work. But Carey suggests that true conceptual change 

involves more than simply tailoring one's concepts to particular situations. Instead, the 

emergence of a concept such as living thing, which encompasses plants and animals and 

allows for induction across these items on the basis of knowledge about shared biological 

mechanisms, would seem to require a more deep-rooted restructuring of base concepts: 

where younger children treat animals and plants as effectively unrelated for purposes of 

induction, by age 10 children seem to appreciate that all living things share certain core 

properties and are governed by common biological causal forces, so that the concept 

living thing begins to support induction for certain kinds of properties. This achievement 

thus indicates the coalescence of formerly unrelated concepts within a single conceptual 

domain. 

Although we have seen that concepts may differentiate in the Rumelhart model, 

the processes we have discussed thus far would seem to preclude the possibility of 

coalescence with development. Moreover, Carey (1985) also suggests that other forms of 

conceptual change are commonly observed in development: rather than reflecting proper 

subsets or supersets of earlier concepts, later-emerging concepts may entail a complete 

re-organization of earlier concepts. 

These patterns of developmental change are not only consistent with the PDP 

framework, but in fact the explanation suggested by the framework shares much in 

common with Carey's (1985) own ideas about the forces that drive conceptual change in 

development. The key observation is that, although living things may have many 

properties in common (e.g. they all have DNA, they all breathe, they all grow and die), 

many of these shared properties are non-obvious (S. A. Gelman & Wellman, 1991). For 

example, animate objects may be considered members of the same class by virtue of 

sharing various internal organs, but these properties are not apparent in their outward 

appearance. By contrast, properties that are less diagnostic of an item's ontological status 

are more readily apparent in the environment. For example, an object's shape, color, 

texture, parts, and patterns of motion are apparent every time the object is encountered. 

Information about its insides, its metabolic functions, or other aspects of its behavior may 

be only sporadically available. Moreover, opportunities for acquiring this information 

likely change as the child develops; for example, children presumably acquire a great 

deal of nonobvious biological information when they attend school. 

The account of conceptual reorganization consistent with these observations, then, 

is as follows: early concepts are shaped by coherent covariation amongst the most 

frequently available object properties—outside, observable properties experienced 

whenever the object is encountered—but such properties may not adequately capture the 

"deep" structure organizing concepts like living thing. Other properties, such as the 

insides of objects and certain of their behaviors, are encountered less frequently and in 

fairly selective contexts; however, across contexts, such properties exhibit strong patterns 

of coherent covariation with one another and with some of the more frequently 

encountered surface properties. As children gain experience with these coherent-but-rare 



properties, sensitivity to coherent covariation drives such properties to become "more 

important" than the very frequent but incoherent surface properties, leading to a 

reorganization of internal representations. This view appears to be very similar to Carey's 

notion that conceptual reorganization arises from the increasing assimilation of 

knowledge about non-obvious properties, but she provides no mechanism whereby such 

assimilation can actually lead to the relevant underlying change. 

To make this account concrete, consider that, although different contexts evoke 

somewhat different similarity relations in the model's environment, there is also some 

important cross-domain structure. For instance, the has, can, and the isa (ie name) 

properties exhibit considerable coherent covariation—if an animal has wings and 

feathers, chances are good that it can fly and is called a "bird"; if it has scales and fins, it 

can likely swim and is called a "fish"; and so on. In contrast, the is properties (ie is red, is 

yellow, is pretty) are more idiosyncratically distributed—they are shared by items that 

otherwise have little in common. Let us assume that many of the coherently covarying 

properties are non-obvious, i.e. they are only observed in specific contexts rather than 

each time the object is encountered, while the remaining "obvious" properties occur quite 

frequently in different contexts. The assumption appears plausible on the face of it: For 

instance, children experience what dogs look like on the outside every time they 

encounter a dog, but only learn about what the dog has on the inside in specialized and 

infrequent situations, such as science class. 

What happens in a model analog of this situation, in which patterns of coherent 

covariation apparent across different specific contexts are reflected only weakly, if at all, 

in the information that is available every time a particular object is encountered? To 

investigate this question, we considered how the base representations in the network 

evolved under a training regime in which the is properties—which as noted above are 

distributed in a relatively arbitrary manner—were available every time an item was 

encountered, but the other properties were only available infrequently, contingent on a 

particular context. Specifically, the is properties were made a part of the target pattern for 

learning, regardless of which context unit was active in the input. For example, when 

presented with robin has in the input, the model was given as the target for learning all of 

the is properties true of robins, as well as all of the has properties. Similarly, when 

presented with robin can in the input, the model was given all of the is properties, as well 

as the can properties. As a result, the information coded in the is patterns was more 

frequent than the information coded in the other contexts; and the is information became 

independent of context, while the information associated with other contexts remained 

context-dependent. We trained the model with these patterns (excluding the 5 mammal 

items simply to keep the cluster plots uncluttered) and examined the resulting internal 

representations at different points during learning. We emphasize that there was no 

change over time in the training in this simulation; the above regime remained constant 

throughout the entire training process. 

The results of this simulation are shown in Figure 12. After 500 epochs of training 

the model has divided the items into several small clusters that do not correspond well to 

global semantic categories. These clusters are organized largely, although not completely, 

by overlap of the superficial but frequent is properties: For example, the right-most 

cluster includes three red items (rose, robin, salmon) as well as the sunflower (likely 

because it is pretty like the rose and big like the salmon); the next cluster consists of 



yellow items (sunfish, daisy, canary); and so on. (In reality there is some degree of 

coherent covariation of color with other object properties. The inconsistency with nature 

allows us to illustrate key properties of the workings of our model.) 

 

 

 

 
 

 
Figure 12. Hierarchical cluster plot of the model's internal representations in a simulation where 

the model was always required to activate is properties in every different context, so that such 

properties were both a) more frequent and b) less context-dependent. Earlier in learning, the 

model shows an organization of internal representations based largely on the more frequent is 

properties; later the internal representations have reorganized to capture the less frequent but 

more coherent structure apparent across the different contexts. 

 

 

Later in the model's development, the representations have reorganized to capture 

more fully the shared structure present across the other contexts. And, the Figure shows 

that both differentiation and coalescence can occur in the model: clusters like the sunfish, 

daisy and canary split apart to take their place in the later structure, and new groupings 

like the general clusters plants and animals coalesce later in learning. Thus it is not the 

case that the later model's representations form a simple superset or subset of the earlier 

model's representations. Instead, the later model's internal representations find no obvious 

progenitor in the earlier model's representations. 

In summary, the model provides two ways of understanding the changing 

induction profiles that, for Carey and others, signal underlying theory change. First, 

children may grow increasingly sensitive to the demands of particular situations or 

contexts, in which different properties and consequently different similarities are 

highlighted, so that items treated as similar for purposes of induction in some situations 

may be treated as quite different in others. Second, the "domain-general 



representations"—those that are acquired as a result of experience across many different 

contexts—are nevertheless influenced both by the frequency with which different kinds 

of information are encountered across different situations, and by the coherent 

covariation of properties across different contexts. Frequently-encountered properties will 

strongly shape the first representations that emerge; but less frequently encountered 

properties can exert a strong influence on representational change later in learning, if 

these properties covary coherently with other properties observed in different situations. 

Thus both the changing induction profiles observed in children's behavior, and the kind 

of representational change that Carey emphasizes as indicative of theory-change, can be 

understood as arising from the same domain-general learning mechanisms described 

earlier. 

 

3 The importance of causal knowledge in semantic cognition 
 

To this point, we have described simulations illustrating how the PDP theory can explain 

a range of phenomena motivating the view that conceptual knowledge is rooted in 

implicit domain theories. We have not yet addressed, however, three lines of evidence 

that most directly support the idea that causal knowledge contributes importantly to 

human semantic cognition. Here we will illustrate how the PDP theory could be extended 

to encompass these phenomena; we will then consider whether the theory is best 

considered an alternative to, or an instantiation of, the theory-theory.  

 
3.1 Inductive inferences are constrained by knowledge of event sequences.  

 

First, several studies demonstrate that knowledge about the sequence of events through 

which an object comes to have its observed properties can influence how an adult or child 

conceives of the object (e.g. Keil, 1989; Gopnik & Sobel, 2000; Ahn, 1998; Ahn, Marsh, 

& Luhmann, 2002). In Keil's "transformation" studies, for instance, children were told 

stories about a raccoon that undergoes a series of interventions and ends up looking like a 

skunk (Keil, 1989). Some children were told that the raccoon was wearing a skunk 

costume; others were told that it was dyed black and had a stripe painted down its back; 

still others were told that it received an injection when it was young that caused it to grow 

up looking and smelling like a skunk. After hearing the story, all children were shown a 

picture of a skunk and told "now the animal looks like this." When asked to decide if it 

was a raccoon or a skunk, the youngest children tended to choose skunk, regardless of 

which transformation story they had been told; but older children tended to choose skunk 

only in conditions where the mechanism of change could be construed as biological (for 

instance, when the raccoon was given an injection and "grew up into" a skunk). Thus for 

older children, the decision as to whether the animal was "really" a raccoon or a skunk 

depended upon the causal mechanism by which it exhibited the visual properties of a 

skunk. 

To understand how the PDP approach might be extended to address these issues, we 

rely upon a generalization of the Rumelhart model, illustrated in Figure 13. In the 

Rumelhart model, items co-occur together with contexts, and both are represented with 

static, externally-applied patterns of activation across corresponding units. In contrast, the 

"contextual" information in the generalized model includes i) other simultaneously-

present aspects of the situation, and ii) an internal representation of prior events leading 



up to the current input and that can influence its interpretation. We suggest that, just as 

the Rumelhart network can learn to generate different outputs for the same item 

depending upon the (static) context in which it is encountered, the generalized model 

should be able to generate different outputs for a given item depending upon the temporal 

context—the particular sequence of events that precedes its appearance.  

 

 

 

 
 

 
 

 

Figure 13. A sketch of a network architecture of the sort we envision will be necessary to capture 

the acquisition of causal knowledge from event sequences and the convergent use of verbal as 

well as other modalities of experience to jointly constrain the emergence of semantic knowledge. 

The diagram is intended to suggest a general correspondence with the Rumelhart network, in 

which a given item is encountered in a particular relational context, and potential completions of 

the event are to be predicted. Here we indicate how the contextual representation can be 

influenced by preceding internal representations (via a time-delayed connection indicated by a 

dotted line), so that predictions about the current input can vary depending upon the preceding 

sequence of events. The illustration also shows how verbal inputs and predictions can be 

interfaced with inputs and predictions from other modalities. The dashed arrows indicate 

projections that may include recurrent connections. 

 



We base this suggestion on previous studies of such recurrent network models. A 

key appeal of recurrent models is that, after learning, processing can be highly sensitive 

to temporal context: the response generated by a given input strongly depends upon the 

sequence of preceding inputs, as captured by a learned internal representation. Such 

models have been brought to bear on a broad range of phenomena relating to knowledge 

about sequential structure (e.g. Elman, 1990, 1991; Cleeremans & McClelland, 1991; 

Cleeremans, 1993; Rohde & Plaut, 1999), including models of language comprehension. 

For example, in St. John's (1992) work on story comprehension, if a named individual 

has been placed in the role of a waiter greeting and seating guests early in an event 

sequence characterizing a visit to a restaurant, then the model will expect this individual 

to be the one who brings the food and the check, and not to be the one who eats the food 

or pays for it.  

Such studies suggest that a learning mechanism like the one we have sketched out 

could provide the basis for understanding phenomena like those documented by Keil and 

others. For instance, children are likely to have had considerable experience with event 

sequences involving costumes and disguises. Those of us who have been parents or 

caregivers to young children may recall how terrifying such costumes and disguises can 

be for children when they are very young, perhaps because at that point the children do 

not yet have an acquired appreciation that the costumes only create a temporary change in 

appearance. But after a child repeatedly witnesses and/or participates in various kinds of 

costume events, he or she apparently comes to appreciate that the visible surface 

properties of animate things can be strikingly but also reversibly affected, and that many 

other properties remain unchanged. A child can dress as Dracula and his friend as ET or 

vice-versa but other sources of information will indicate that many of the costumed 

individual's properties are maintained throughout. Furthermore, both he and his friend 

will revert to their prior appearance when they take their costumes off. Through such 

experiences, we suggest, the child learns to maintain an internal representation of a 

costumed individual that retains the properties that the person had before putting on the 

costume, rather than the properties known to be possessed by the things they appear to be 

while they are wearing the costume.  

In addition to this direct learning from experiences with individuals in costumes, 

we also suggest that verbal inputs in the form of statements that are made by others 

during costume-wearing events (e.g., statements like "That only your friend Sally dressed 

up like ET") as well as movies or stories about costume wearing events will contribute to 

the acquisition of knowledge about costumes. We don't suggest that children will need to 

have had experience specifically with raccoons in skunk costumes, but only that they will 

need to have had experience with other animate objects in costumes, because we would 

expect them to generalize across different types of animals, due to their having similar 

underlying representations. Similarly, children may not need to have direct experience 

with sequences in which specific animals are given injections in order to draw 

conclusions from the story in which the raccoon that received an injection "grew up into" 

a skunk. Perhaps they will think the raccoon is now "really" a skunk because many times 

animals transform naturally from one apparent "kind" to another as they grow up, the 

transformation of caterpillars to butterflies and tadpoles to frogs being two clear 

examples. 



Of course we understand that some readers may remain to be convinced that this 

kind of story about the influence of causal knowledge on semantic cognition could ever 

work in practice. While we cannot allay all such concerns without extensive further work, 

we can point to an existing simulation that addresses issues related to those arising in the 

"costume" experiments reviewed above. The simulation in question addresses knowledge 

about the continued existence of objects even when they are out of view. When an object 

A moves in front of another object B, object B disappears from view—a situation 

analogous to that in which a costume C is put on by an individual D, so that the 

individual no longer looks like itself even though it actually remains the same inside. In 

the case of object permanence, we know that object B is "still there" despite appearances 

to the contrary; and in the case of a costume, we know that despite appearances it is still 

individual D standing in front of us, even though the costume replaces D's visible 

attributes with what might be a very different set of properties.  

Munakata, McClelland, Johnson, and Siegler (1997) demonstrated how a very 

simple recurrent network could learn to maintain representations of objects that are no 

longer visible from simple event sequences involving objects hidden by occluders. The 

essential element of the simulated event sequences was that objects hidden by the 

occluder became visible again when the occluder moved away. In order to correctly 

predict that this would occur, the network learned to maintain a representation of the 

object during the part of the event sequence when it was hidden by the occluder. 

Although of course costumes provide far more complex situations than this, this 

simulation illustrates the fundamental property required for a system to employ 

knowledge about an item's prior status in order to maintain a consistent internal 

representation of the item when it is subjected to certain transformations, rather than 

treating it as having been fundamentally transformed by the alteration. We believe that 

similar processes may also underlie acquisition and use of knowledge about the 

consequences of more complicated transformations documented by Keil (1989) and 

others.  

 
3.2 Children strongly weight inferred causal properties when generalizing newly-

learned names. 

 

In a very different series of studies, Gopnik and Sobel (2000) have shown that i) children 

make inferences about the causal properties of novel items and ii) use these inferences to 

govern their decisions about how names should generalize. (We consider Gopnik and 

colleague's more recent work on inferring causal properties later.) In the canonical 

paradigm, children are shown a machine called a "blicket detector." The blicket detector 

flashes and makes music when certain blocks (blickets) are placed on it; but nothing 

happens when other blocks (non-blickets) are placed on it. In early studies with this 

device, the authors showed that children would use the apparent causal potency of a 

given object, rather than its appearance, to decide whether it is a blicket or not. That is, 

shown a small yellow block that is called a blicket and activates the detector, and a tall 

red block that does not, children will then call another block a blicket if it activates the 

detector, regardless of its color or size, generalizing the name to other objects based on 

their causal powers, not on their color or shape. The experiment thus shows that children 

appear to lend special weight to "causal" properties in their inductive inferences.  



We consider such phenomena to reflect the operation of mechanisms similar to 

those described in previous sections. The children in Gopnik and Sobel's experiment may 

not have had much experience with blocks that produce music when they are placed on 

certain boxes; but no doubt they have had experience with other kinds of objects with 

specific causal properties. Keys, switches, fasteners, bank cards, batteries, openers, 

remote controls, and many other objects in everyday use have specific causal powers of 

this type. And, such objects can vary considerably in shape or other aspects of their 

appearance, while remaining consistent in their causal potency. Batteries, for instance, 

come in many shapes, sizes, and colors, but have similar causal consequences. We 

suggest that people learn to represent such objects (and, indeed, all other types of objects) 

through exposure to event sequences in which they interact with other objects, with 

partially predictable consequences. Furthermore, we suggest that the words we use to 

refer to such objects covary more consistently with their causal properties than with 

surface attributes such as shape and size, with the consequence that these causal 

properties become more important in determining how such object's names will 

generalize. 

 
3.3 The role of explanations in causal and other semantic tasks.  

 

The third source of evidence that children's concepts depend upon causal theories is 

simply that they can provide explicit explanations for their semantic judgments. In one 

study, Massey and Gelman (1988) showed children photographs of novel objects and, for 

each, asked them to decide whether it could move itself up and down a hill. After making 

their judgment, children were asked to explain them. Their responses seemed to the 

authors to reveal an underlying process of causal inference. For instance, when a child 

says "it can move up and down the hill because it has feet," this indicates, to Massey and 

Gelman, that in making their judgment, the child is consulting an underlying theory in 

which "having feet" is precisely the property that causes the ability to move 

autonomously. The models we have described may explain how the child is able generate 

the judgment itself, but how can they account for this introspective ability to explain the 

reasons for the judgment? 

The difficulty with this argument is that the explanations people give for their 

own behavior are often at complete variance from the factors that demonstrably govern 

their responding (Nisbett & Wilson, 1977). Indeed, people are remarkably poor at 

judging whether they are capable of explaining even very familiar causal scenarios (e.g. 

how a toilet works; see Wilson & Keil, 2000). Such findings suggest that the explicit 

explanations people proffer for their own judgments do not necessarily shed light on the 

mechanisms that support the judgments; and this may be true even when there is a degree 

of concordance between the behavior and the explanation. That is, we do not believe that 

overt explanations people produce provide much insight into the processes that support 

their semantic judgments. 

We do accept that overt explanations constitute one of the various kinds of 

responses that people can learn to generate from a given situation; and we suggest that a 

shared intuitive sense of what "counts" as an explanation is one of the things that could 

be learned within a model like that shown in Figure 13 (see Rogers & McClelland, 2004, 

Chapter 8.). On this view, explanations can shape, and are shaped by, our internal 

semantic representations of witnessed events, just like other varieties of experience and 



behavior; however the propositions that appear in overt explanations do not necessarily 

play a causal role in generating semantic judgments. 

 

4 Contrasting the PDP and Theory-Based Approaches 
 

The variety of phenomena and the arguments emphasized by theory-based approaches 

demonstrate clearly that adults and even young children can be quite sophisticated in 

their semantic abilities, and we often find ourselves in agreement with some of the claims 

of theory-based approaches. For example, we agree with theory theorists that "semantic 

knowledge" encompasses more than just list-like knowledge about the properties of 

objects—it includes knowledge about how objects interact with one another, how certain 

properties and situations give rise to other properties and situations, and so on. In our 

book we enumerated several points of agreement between our position and theory-based 

approaches (Rogers & McClelland, 2004, Table 8.1). In this section, however, we will 

attempt to bring out the key differences. (We should note that we are contrasting our view 

with a theory-based approach that is more of a prototype than a specific theory held by 

any individual investigator. Several important contributors expressly do not endorse all of 

the properties we attribute to some version of the theory approach. For instance, Gopnik 

(Gopnik & Wellman, 1994; Gopnik & Meltzoff, 1997), a major proponent of theory-

theory, considers the possibility that theory-like knowledge may be acquired using a 

domain-general mechanism, albeit one that may be especially attuned to the detection of 

causal relations (Gopnik et al., 2004). Also, Murphy (2002) eschews the theory approach 

in favor of what he calls the "knowledge approach," even though he was one of the early 

protagonists of theory-based approaches (Murphy & Medin, 1985), and he expresses 

doubt about domain specificity, innateness of domain knowledge, and even that causal 

knowledge plays a special role in semantic cognition.) 

The first point of contrast lies in the question of whether the knowledge that 

underlies semantic task performance necessarily depends on initial (i.e. innate) principles 

that provide the seed or skeleton on which the development of semantic cognition 

depends. Many researchers in the theory-theory and related traditions appear to favor the 

view that some initial principles are necessary to serve as a base for further elaboration of 

conceptual knowledge. The argument for innateness, however, sometimes rests on little 

more than the suggestion that known learning procedures seem inadequate to explain the 

acquisition of the abilities children possess (Keil, 1994). Even the very simple networks 

that we have employed can acquire domain-specific behaviors similar to those that 

putatively arise from naive domain theories. Thus the observation of domain-specific 

behaviors in children provides little reason to infer innate domain-specific theories (or 

innate domain-specific constraints leading to such theories). 

To be clear, we do not contend that there are no initial constraints of any kind on 

learning or development. We accept, for example, that some animals may be endowed 

with an initial bias to link taste with sickness but not with electric shock (Garcia & 

Koelling, 1966), and that perceptual mechanisms have evolved to facilitate, among other 

things, the representation of external three-dimensional space and the segregation of the 

perceptual world into objects. Where we appear to differ from many theorists is in our 

feeling that, for many aspects of semantic knowledge, there is no clear reason at present 

to rely so heavily upon the invocation of initial domain-specific principles. Mechanisms 



exist that can learn to behave in domain-specific ways based on experience, without the 

need for extensive initial domain-specific commitments. 

A second point of contrast with theory-based approaches lies in the question of 

whether semantic abilities are fundamentally rooted in causal knowledge. We certainly 

agree that children learn about and rely upon knowledge of causal properties and 

relations, and that this knowledge constitutes a part of their semantic knowledge. We do 

not accept, however, the need to attribute special status to causal knowledge; and we 

don't believe that causal knowledge necessarily carries with it any real appreciation of 

mechanism. For us, causal knowledge, together with all other forms of semantic 

knowledge, inheres in the configuration of weights that allows the semantic network to 

generate expectations about the likely outcomes of particular event sequences. Properties 

that enter into causal relationships with other properties are, by definition, associated with 

more predictable outcomes across different events; hence such properties will covary 

coherently with other properties; consequently they will be quickly learned and strongly 

weighted by the learning mechanisms we have described. Also, we fully accept that 

words like "cause" are part of language and that such words can influence how we think 

about event sequences—possibly leading us on some occasions to assign greater 

centrality to events that are described as causes rather than effects. We simply hold that 

such phenomena do not require that causal knowledge be construed as fundamentally 

different from other kinds of semantic knowledge. 

Third, the theory-theory has what we believe is an important and related set of 

weaknesses, at least as it has been developed up to now. Specifically, theory-theory is for 

the most part non-committal about the nature of the representations and processes that 

underlie semantic task performance and the development of semantic abilities. The most 

systematic statements of the approach (Gopnik and Wellman, 1994; Gopnik and 

Meltzoff, 1997) contain no specification of mechanisms for the representation, use and 

acquisition of the knowledge underlying semantic task performance. Instead the authors 

of these works simply suggest that it is useful to think of the child's knowledge as being, 

in some respects, analogous to a scientific theory. The subsequent effort by Gopnik et al. 

(2004) to characterize children's inferences as conforming to normative rules of causal 

inference does not really alter this lack of commitment to an underlying mechanism—

indeed, Gopnik et al. (2004) explicitly eschew any such commitment. 

Lack of commitment to mechanism can, of course, be a virtue when any such 

commitment would be premature. In such cases the theory simply remains 

underspecified. Without a more mechanistic specification, however, the analogy to 

explicit scientific theories brings with it a tendency to attribute properties of such theories 

to naive domain knowledge, whether such attribution is intended or not. In our view, this 

tendency can be counter-productive, because there are important properties of scientific 

theories that naturalistic human semantic knowledge does not actually have. Real 

scientific theories are explicit constructions, developed as vehicles for sharing among a 

community of scientists a set of tools for deriving results (such as predictions and 

explanations) using explicit, overtly specified procedures that leave a trace of their 

application through a series of intermediate steps from premises to conclusions. As far as 

we can tell, few theory-theorists would actually wish to claim that these properties of real 

scientific theories are also characteristic of the intuitive domain knowledge that underlies 

the performance of children or adults in naturalistic semantic tasks.  



We suspect, however, that these aspects of real scientific theories occasionally 

filter into the thinking of researchers. For example, Spelke, Breinlinger, Macomber, and 

Jacobson (1992) speak of children reasoning from principles stated in propositional form. 

This idea may provide a useful basis for deriving predictions for experiments, whether or 

not anyone actually believes that the principle is held in explicit propositional form and 

enters into a reasoning process that follows specified rules of inference. But it may also 

carry additional implications that lead to unjustified conclusions. For example, the notion 

that a theory contains explicit principles and/or rules carries with it the tendency to 

suppose that there must be a mechanism that constructs such principles and/or rules. Yet 

it is easy to show that the full set of possible principles/rules vastly outstrips those that 

children appear to actually use; and that the subset that children appear to use is 

underdetermined by actual evidence. Thus the tacit invocation of explicit principles/rules 

ends up motivating the suggestion that there must be initial domain constraints guiding at 

least the range of possible principles that might be entertained (c.f. Chomsky, 1980; Keil, 

1989). If, however, behavior is not governed by explicit principles or rules, it is only 

misleading to consider the difficulties that would arise in attempting to induce them. By 

proposing that learning occurs through the gradual adaptation of connection weights 

driven by a simple experience-dependent learning process, the PDP approach avoids 

these pitfalls and allows us to revisit with fresh eyes the possibility that structure can be 

induced from experience. 

With these observations in mind, we are now in a position to consider the 

relationship between the PDP approach to semantic cognition and theory-based 

approaches. One possible stance would be to suggest that the PDP framework constitutes 

an implementation of a theory-based approach—one that simply fills in the missing 

implementational details. Though in some ways this suggestion is appealing, we have 

come to feel that such a conclusion would be misleading, since the representations and 

processes captured by PDP networks are quite different from the devices provided by 

explicit scientific theories. While the knowledge in PDP networks may be theory-like in 

some ways, it is expressly not explicit in the way it would need to be in order to 

constitute a theory by our definition. Thus, we would argue that the PDP framework 

provides a useful alternative framework for understanding the acquisition, representation, 

and use of semantic knowledge. 

 

5 Principles of The PDP approach to Semantic Cognition 
 

We consider here the core principles underlying our approach to semantic cognition—

those aspects of the simple model implementation to which we are strongly committed. 

The model itself is obviously greatly simplified with respect to the theory. We have 

discussed some of the ways the model might be extended; and we envision that a more 

complete model may involve additional elaborations that we have not foreseen. The 

following principles capture, however, aspects of the simple model that we believe will 

prove critical to any such future account; they are considered at length in Rogers and 

McClelland (2004, Chapter 9). 

1. Predictive error-driven learning. Our current work grows in part out of a long-

standing effort to apply the PDP framework to aspects of cognitive development 

(McClelland, 1989, 1994; Munakata & McClelland, 2003). This work has stressed how 



predictive error-driven learning may provide the engine for knowledge acquisition in a 

wide range of domains, including language, object permanence, and causal reasoning; we 

believe that the same engine drives semantic knowledge acquisition. 

2. Sensitivity to coherent covariation. The models we have considered are 

strongly sensitive to patterns of coherent covariation amongst the properties that 

characterize different items and contexts; we propose that such sensitivity is critical to 

understanding many aspects of semantic cognition. 

3. The convergence principle. Sensitivity to coherent covariation is not a property 

of all networks that might be trained with predictive error-driven learning. Rather, such 

sensitivity requires that error signals for all sources of information about an item 

converge, at some point in the network, on the same set of connection weights. In the 

Rumelhart network, such convergence occurs at the first layer of weights projecting from 

Item to Representation layers—error signals from all output units, across all contexts, 

influence how these weights change, and permit the network to detect patterns of 

coherent covariation amongst them. Other network architectures considered in the book 

(Chapter 9) do not have this property, and so will not be sensitive to coherent covariation, 

and will not exhibit the interesting behaviors critical to our account of semantic abilities. 

4. Distributed representation. Something that sets the PDP approach to human 

cognition apart from some other connectionist approaches is the stipulation that 

representations are distributed: the same units participate in representing many different 

items, with each individual representation consisting of a particular pattern of activity 

across the set. Importantly for the current work, distributed representations promote 

generalization: what is known about one item tends to transfer to other items with similar 

representations. Although our models do employ localist input and output units, these 

never communicate with each other directly—their influences on one another are always 

mediated by distributed internal representations. 

5. Weak initial differentiation. A specific property of the Rumelhart model, very 

important to the way that it functions, is that the network is initialized with very small 

random connection weights, so that all items initially receive nearly identical distributed 

representations. The important consequence of this choice is that at first, whatever the 

network learns about any item tends to transfer to all other items. This allows for rapid 

acquisition and complete generalization of information that is applicable to all kinds of 

things; but it also induces in the network a profound initial insensitivity to the properties 

that individuate particular items. Different items are treated as effectively the same until 

considerable evidence is accumulated indicating how they should be distinguished, based 

on patterns of coherent covariation. After each wave of differentiation, there remains a 

tendency to treat those items not yet distinguished as very similar. In general, this 

property of the network imposes a very strong tendency to generalize, instead of 

capturing idiosyncratic differences between items. 

6. Gradual, structure-sensitive learning. Our simulations depend on slowly and 

gradually adjusting the weights during learning, so that weight changes are not dominated 

by any single experience or a limited set of experiences, but tend to benefit processing for 

all items and all contexts. We believe that learning in a real environment requires the 

assimilation of statistical properties, some of which may be strong and of fairly low-

order, but others of which are much subtler and infrequently encountered. The 



environment so characterized favors slow learning for reasons discussed by McClelland 

et al. (1995) and in the book (pp.65-66). 

7. Activation-based representation of novel objects. If learning in the semantic 

system is a gradual and incremental process, then it cannot mediate the ability to 

immediately use new information obtained from one or a few experiences. To explain 

such abilities, we propose that the semantic system can dynamically construct useful 

internal representations of new items and experiences—instantiated as patterns of activity 

across the same units that process all other items and events—from the knowledge that 

has accumulated in its weights from past experience. In the current work we have 

implemented this principle using backpropagation-to-representation—a process that 

allows the feed-forward Rumelhart network, given some information about a novel 

object's observed properties, to assign it an internal representation (See pages 63-65 and 

69-76 of our book for details and discussion). The important point is that the 

representations so assigned are not a product of learning—they are not stored in 

connection weights within the semantic system. Instead the representations are used 

directly as the basis for judging semantic similarity and making inferences about the 

object's unobserved properties and behaviors in other situations. To allow such 

representations to be brought back to mind in another situation, they can be stored via the 

complementary fast-learning system in the hippocampus; and with repetition these 

representations can be gradually integrated in the connection weights in the neocortical 

learning system. 

It must be noted that a system adhering to the principles above has several 

limitations; specifically, it tends to be quite insensitive to idiosyncratic properties of 

individual objects and learns very slowly. In light of this and other considerations, 

McClelland et al. (1995) extended earlier ideas of David Marr (1971) in arguing that it is 

crucial to provide a second, complementary learning system that relies on sparse, non-

overlapping representations rather than densely overlapping, distributed ones, and in 

which large weight changes can be made based on one or a few presentations of novel 

information. This allows knowledge of idiosyncratic properties of individuals to be 

learned rapidly and generalized very narrowly, complementing the positive features of 

the slow-learning system. McClelland et al. (1995) identify the fast learning system with 

the medial temporal lobes, and the slow-learning system primarily with the neocortex. 

Such a system would support a wide range of important functions that are quite domain 

general; as such both the slow learning cortical system and the fast-learning hippocampal 

system are, in our view, parts of a general-purpose, cross-domain learning system. 

 

6 Broader Issues 
 

In the final chapter of our book we touch on some broader issues in cognitive science that 

relate to the specific issues in conceptual development that have been our focus above. 

Here we summarize briefly the points we made in that discussion that have not already 

been covered above. 

 
6.1 Thinking and reasoning.  
 

As is often the case with PDP models, we suspect that our models will arouse in some 

readers a feeling that there's some crucial element of cognition that is missing. Even those 



who feel generally favorable toward our approach may have a sense that there is 

something to human conceptual abilities that goes beyond implicit prediction and pattern 

completion. Do we really think this is all their is to semantic cognition? What about 

"thinking"? 

A suggestion explored both in Hinton's (1981) early work and by Rumelhart et al. 

(1986) is that temporally extended acts of cognition—what one would ordinarily call 

"thinking"—involves the repeated querying of the processing system: taking the output of 

one prediction or pattern completion cycle and using that as the input for the next. 

Rumelhart illustrated the basic idea with a mental simulation of a game of tic-tac-toe, in 

which a network trained to generate the next move from a given board position simply 

applied its successive predictions to its own inputs, starting with an empty board. Hinton 

used a similar idea to suggest how one might discover the identity of someone's 

grandfather from stored propositions about fathers: One could simply complete the 

proposition "John's father is" and from the result construct a new probe for the father of 

John's father. A slightly more general idea is that thinking is a kind of mental simulation, 

not only encompassing internally formulated propositions or sequences of discrete game-

board configurations, but also including a more continuous playing out of imagined 

experience. This perspective is related to Barsalou's proposals (e.g. Barsalou, Simmons, 

Barbey, & Wilson, 2003), and seems to us to be quite a natural way of thinking about 

thinking in a PDP framework. 

 
6.2 Relationship between PDP models and Bayesian approaches. 
 

Over the last several years there has been considerable interest in the idea that various 

aspects of human cognition, including many aspects of semantic cognition, can be 

characterized as a process of Bayesian inference (see e.g. Anderson, 1990; Oaksford & 

Chater, 1998). What is the relationship between these ideas and the approach we have 

taken here? 

One perspective might be that they are distinct alternative frameworks for 

thinking about human cognition. In our view, however, Bayesian approaches are not 

replacements for connectionist models nor for symbolic frameworks. Rather, they 

provide a useful descriptive framework that can be complementary to these other more 

mechanistic approaches. Indeed, Bayesian approaches are often cast largely at Marr's 

(1982) computational level—specifying, for example, a normative theory for inference 

from evidence under uncertainty. It is a further matter to provide a model at what Marr 

called the algorithmic level, which specifies the processes and representations that 

support the Bayesian computation. Connectionist models are cast at this algorithmic level 

and are thus not inconsistent with normative Bayesian approaches.  

It is worth noting that many connectionist models were either designed to be, or 

were later shown to be, implementations of Bayesian inference processes (McClelland, 

1998). For example, the Boltzmann machine (Hinton & Sejnowski, 1986) and Harmony 

theory (Smolensky, 1986) are general-purpose frameworks for deriving optimal 

(Bayesian) inferences from input information, guided by knowledge built into connection 

weights; and the stochastic version of the interactive activation model (McClelland, 1991; 

Movellan & McClelland, 2001) has this property also. The backpropagation algorithm 

implements a Bayes optimal process in the sense that it learns connection weights that 

maximize the probability of the output given the input (subject to certain assumptions 



about the characteristics of the variability that perturbs the observed input-output 

patterns), as several authors pointed out in the early 1990's (MacKay, 1992; Rumelhart et 

al., 1995). 

Connectionist models might therefore be viewed as specifying the actual 

algorithms that people use to carry out Bayesian computations in specific task situations. 

There is, however, one important point of difference between our approach and most 

such models that we are aware of. Unlike the highly distributed connectionist models that 

are the focus of our own work, the Bayesian models generally operate with a set of 

explicitly enumerated alternative hypotheses. For example, in Bayesian theories of 

categorization, an item is assigned a posterior probability of having come from each of 

several possible categories, and each category specifies a probability distribution for the 

features or attributes of all of its members. In our PDP approach there are no such 

categories, but rather each item is represented in a continuous space in which items are 

clustered and/or differentiated to varying degrees. We hold that the use of distributed 

representations has desirable computational consequences, and it will be interesting to 

explore further how they might be encompassed within a Bayesian framework. 

 
6.3 Semantic cognition in the brain. 
 

The neural basis of semantic cognition has been the focus of a great deal of recent 

research using a variety of methodologies. Investigations of semantic impairment 

following brain damage and functional imaging studies of healthy adults both support the 

general conclusion that semantic processing is widely distributed across many brain 

regions. One widely-held view for which substantial evidence now exists is that the act of 

bringing to mind any particular type of information about an object evokes a pattern of 

neural activity in the same part or parts of the brain that represent that type of information 

directly during perception and action (Martin & Chao, 2001). 

Our simple and abstract model can be brought into line with this work by placing 

the input/output units representing different types of information in different brain 

regions (Rogers et al., 2004), so that units coding different kinds of movement are located 

in or near brain regions that represent perceived movement, those coding color are in or 

near regions mediating color perception, etc. In addition to these units, however, our 

theory calls for a convergent representation: a set of representation units that tie together 

all of an object's properties across different information types. Such units might lie in the 

temporal pole, which is the focus of pathology in the purest and most profound semantic 

disorder, semantic dementa (Mummery et al., 2000). Others (Barsalou et al., 2003; 

Damasio, 1989) have emphasized the potential role of this region as a repository of 

addresses or tags for conceptual representations, but we suggest that the patterns of 

activation in these areas are themselves "semantic" in two respects. First, their similarity 

relations capture the semantic similarities among concepts, thereby fostering semantic 

induction. Second, damage or degeneration in these areas produces a pattern of 

degradation that reflects this semantic similarity structure. Distinctions between items 

that are very similar semantically tend to be lost as a result of damage to this system, 

while distinctions between highly dissimilar concepts are maintained (Rogers et al., 

2004).  

Note that we do not contend that these representations contain a "copy" of 

semantic features, propositions, images, or other explicit content. In agreement with 



many others, we believe that this content is instantiated in sensory, motor, and linguistic 

representations closely tied to those that mediate perception and action—roughly 

corresponding to the input and output units in the Rumelhart model. Instead, the 

intermediating "semantic" representations that, we suggest, are encoded in anterior 

temporal lobe regions are like the learned internal representations acquired in the 

Rumelhart model. They capture similarity structure that is critical for semantic 

generalization and induction, and that determines which explicit properties are 

"important" for a given concept; but they do not encode directly-interpretable semantic 

information. 

 

7 Conclusion 
 

It is clear to us that our efforts are only one step toward the goal of providing an 

integrative account of human semantic cognition. The principles stated here are very 

general and we expect they will remain the subject of ongoing debate and investigation. 

The form that a complete theory will ultimately take cannot be fully envisioned at this 

time. We do believe, however, that the small step represented by this work, together with 

those taken by Hinton (1981) and Rumelhart (1990), are steps in the right direction; and 

that, whatever the eventual form of the complete theory, the principles exemplified in this 

précis will be instantiated in it. At the same time, we expect that future work will lead to 

the discovery of additional principles, not yet conceived, which will help the theory we 

have laid out here to gradually evolve. Our main hope for this work is that it will 

contribute to the future efforts of others, thereby serving as a part of the process that will 

lead us to a fuller understanding of all aspects of semantic cognition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1. Six key phenomena in the study of semantic abilities 

Phenomenon Example 
Progressive 

differentiation of 

concepts 

Children acquire broader semantic distinctions earlier than more 

finegrained distinctions. For example, when perceptual similarity amongst 

items is controlled, infants differentiate animals from furniture around 7- 9 

months of age, but do not make finer-grained distinctions (e.g. between 

fish and birds or chairs and tables) until somewhat later (Pauen, 2002a; 

Mandler et al., 1991); and a similar pattern of coarse-to-fine conceptual 

differentiation can be observed between the ages of 4 and 10 in verbal 

assessments of knowledge about which predicates can appropriately apply 

to which nouns (Keil, 1989). 

 
Category coherence Some groupings of objects (e.g. “the set of all things that are dogs”) seem 

to provide a useful basis for naming and inductive generalization, whereas 

other groupings (e.g. “the set of all things that are blue”) do not. How does 

the semantic system “know” which groupings of objects should be used for 

purposes of naming and inductive generalization and which should not? 

Domain-specific 

attribute weighting 

Some properties seem of central importance to a given concept, whereas 

others do not. For instance, “being cold inside” seems important to the 

concept refrigerator, whereas “being white” does not. Furthermore, 

properties that are central to some concepts may be unimportant for 

others—although having a white color may seem unimportant for a 

refrigerator, it seems more critical to the concept polar bear. What are the 

mechanisms that support domain-specific attribute weighting? 

Illusory correlations Children and adults sometimes attest to beliefs that directly contradict their 

own experience. For instance, when shown a photograph of a kiwi bird—a 

furry-looking animal with eyes but no discernable feet—children may 

assert that the animal can move “because it has feet,” even while explicitly 

stating that they can see no feet in the photograph. Such illusory 

correlations appear to indicate some organizing force behind children’s 

inferences that goes beyond “mere” associative learning. What 

mechanisms promote illusory correlations? 

Conceptual 

reorganization 

Children’s inductive projection of biological facts to various different 

plants and animals changes dramatically between the ages of 4 and 10. For 

some researchers, these changing patterns of induction indicate changes to 

the implicit theories that children bring to bear on explaining biological 

facts. What mechanism gives rise to changing induction profiles over 

development? 

The importance of 

causal knowledge 

A variety of evidence now indicates that, in various kinds of semantic 

induction tasks, children and adults strongly weight causally central 

properties over other salient but non-causal properties. Why are people 

sensitive to causal properties? 

 



Table 2. Distribution of attributes across four test objects in the simulation of category-

specific attribute weighting. 

 

 bright dull big small 

Object 1 1 0 1 0 

Object 2 1 0 0 1 

Object 3 0 1 1 0 

Object 4 0 1 0 1 
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